Kinetics and thermodynamic behavior of carbon clusters under high pressure and high temperature

被引:42
|
作者
Ree, FH [1 ]
Winter, NW [1 ]
Glosli, JN [1 ]
Viecelli, JA [1 ]
机构
[1] Univ Calif Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
来源
PHYSICA B | 1999年 / 265卷 / 1-4期
关键词
carbon clusters; kinetics; graphite-diamond transition; diffusion;
D O I
10.1016/S0921-4526(98)01380-5
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Physical processes that govern the growth kinetics of carbon clusters at high pressure and high temperature are: (a) structural sp(3)-to-sp(2) and sp(2)-to-sp bonding changes and (b) cluster diffusion.. Our study on item (a) deals with ab initio and semi-empirical quantum mechanical calculations to examine effects of cluster size on the relative stability of graphite and diamond clusters and the energy barrier between the two. We have also made molecular dynamics simulations using the Brenner bond order potential to show that the melting line of diamond based on the Brenner potential is reasonable and that the liquid structure changes from mostly sp-bonded carbon chains to mostly sp(3)-bonding over a narrow pressure interval. We examined item (b) by using the time-dependent cluster size distribution function obtained from the relevant Smoluchowski equations. The resulting surface contribution to the Gibbs free energy of carbon clusters was implemented in a thermochemical equilibrium code and also to a new detonation model in a hydrodynamic code to examine the behavior of carbon-rich explosives. We find that carbon-rich explosives are sensitive to the metastability of graphitic carbon clusters and also to a delayed release of the surface energy of carbon clusters by the slow diffusive clustering processes. Published by Elsevier Science B.V.
引用
收藏
页码:223 / 229
页数:7
相关论文
共 50 条
  • [31] Experimental investigation of high temperature and high pressure coal gasification
    Tremel, Alexander
    Haselsteiner, Thomas
    Kunze, Christian
    Spliethoff, Hartmut
    APPLIED ENERGY, 2012, 92 : 279 - 285
  • [32] Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator
    Grauwet, Tara
    Van der Plancken, Iesel
    Vervoort, Liesbeth
    Matser, Ariette
    Hendrickx, Marc
    Van Loey, Ann
    JOURNAL OF FOOD ENGINEERING, 2011, 105 (01) : 36 - 47
  • [33] The prediction of char combustion kinetics at high temperature
    Coda, B
    Tognotti, L
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2000, 21 (1-3) : 79 - 86
  • [34] High temperature oxidation kinetics of dysprosium particles
    Jaques, Brian J.
    Butt, Darryl P.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 644 : 211 - 222
  • [35] High-temperature titanium nitridation kinetics
    I. A. Kovalev
    K. B. Kuznetsov
    V. Yu. Zufman
    A. I. Ogarkov
    S. V. Shevtsov
    S. V. Kannykin
    A. S. Chernyavskii
    K. A. Solntsev
    Inorganic Materials, 2016, 52 : 1230 - 1234
  • [36] High-temperature titanium nitridation kinetics
    Kovalev, I. A.
    Kuznetsov, K. B.
    Zufman, V. Yu.
    Ogarkov, A. I.
    Shevtsov, S. V.
    Kannykin, S. V.
    Chernyavskii, A. S.
    Solntsev, K. A.
    INORGANIC MATERIALS, 2016, 52 (12) : 1230 - 1234
  • [37] The kinetics of the Cd21Ni5 intermetallic growth under high hydrostatic pressure
    Paritskaya, LN
    Bogdanov, VV
    Kaganovskii, YS
    Lojkowski, W
    Jun, J
    Presz, A
    INTERFACE SCIENCE, 2000, 8 (01) : 77 - 84
  • [38] Inactivation of Saccharomyces cerevisiae by combined high pressure carbon dioxide and high pressure homogenization
    Du, Luyan
    Sun, Yanlin
    Han, Liying
    Su, Shupeng
    JOURNAL OF SUPERCRITICAL FLUIDS, 2023, 193
  • [39] Enhancement of cyclic ether formation from polyalcohol compounds in high temperature liquid water by high pressure carbon dioxide
    Yamaguchi, Aritomo
    Hiyoshi, Norihito
    Sato, Osamu
    Bando, Kyoko K.
    Shirai, Masayuki
    GREEN CHEMISTRY, 2009, 11 (01) : 48 - 52
  • [40] Kinetics of hydrogen absorption by scandium at high temperature
    Mazzolai, Giovanni
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (07) : 4507 - 4512