On the ruin time distribution for a Sparre Andersen process with exponential claim sizes

被引:47
作者
Borovkov, Konstantin A. [2 ]
Dickson, David C. M. [1 ]
机构
[1] Univ Melbourne, Dept Econ, Ctr Actuarial Studies, Melbourne, Vic 3010, Australia
[2] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
关键词
Sparre Andersen model; time of ruin; exponential claims;
D O I
10.1016/j.insmatheco.2008.02.002
中图分类号
F [经济];
学科分类号
02 ;
摘要
We derive a closed-form (infinite series) representation for the distribution of the ruin time for the Sparre Andersen model with exponentially distributed claims. This extends a recent result of Dickson et al. [Dickson, D.C.M., Hughes, B.D., Zhang, L., 2005. The density of the time to ruin for a Sparre Andersen process with Erlang arrivals and exponential claims. Scand. Actuar. J., 358-376] for such processes with Erlang inter-claim times. The derivation is based on transforming the original boundary crossing problem to an equivalent one on linear lower boundary crossing by a spectrally positive Levy process. We illustrate our result in the cases of gamma, mixed exponential and inverse Gaussian inter-claim time distributions. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1104 / 1108
页数:5
相关论文
共 13 条
[1]  
[Anonymous], [No title captured]
[2]  
[Anonymous], 1978, SURVIVAL PROBABILITI
[3]  
[Anonymous], 1964, Handbook of mathematical functions
[4]  
Asmussen S., 2000, Ruin probabilities
[5]  
Borovkov AA, 1976, STOCHASTIC PROCESSES
[6]   KENDALL'S IDENTITY FOR THE FIRST CROSSING TIME REVISITED [J].
Borovkov, K. ;
Burq, Z. .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2001, 6 :91-94
[7]   A NOTE ON A LIMIT-THEOREM FOR DIFFERENTIABLE MAPPINGS [J].
BOROVKOV, KA .
ANNALS OF PROBABILITY, 1985, 13 (03) :1018-1021
[8]  
DICKSON DCM, 2008, ASTIN B IN PRESS, V38
[9]  
DREKIC S., 2003, ASTIN BULL, V33, P11, DOI DOI 10.1017/S0515036100013271
[10]   Non-Poissonian claims' arrivals and calculation of the probability of ruin [J].
Malinovskii, VK .
INSURANCE MATHEMATICS & ECONOMICS, 1998, 22 (02) :123-138