Design and optimization of 3-mode x 12-core dual-ring structured few-mode multi-core fiber

被引:11
作者
Tu, Jiajing [1 ]
Long, Keping [1 ]
Saitoh, Kunimasa [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Comp & Commun Engn, Beijing 100083, Peoples R China
[2] Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Few-mode multi-core fiber; Dual-ring structure; Crosstalk; Differential mode delay; DELAY; CROSSTALK;
D O I
10.1016/j.optcom.2016.06.049
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We adopt dual-ring structure (DRS) for the core arrangement of 3-mode (LP01, LP11a and LP11b) x 12-core few-mode multi-core fiber (FM-MCF) and then introduce the design method for this DRS-FM-MCF. After investigating the characteristics such as differential mode delay (DMD), inter-core crosstalk (XT), threshold value of bending radius (Roc), relative core multiplicity factor (RCMF) and cable cutoff wavelength (lambda(cc)), we present an optimized scheme for this DRS-FM-MCF. For the optimized DRS-FM-MCF, IDMDI is <= 100 ps/km over C+L band, the maximum XT at wavelength (lambda) of 1625 nm achieves -33 dB/ 100 km, maximum R-pk is 11.03 cm, RCMF (LP01, LP11a and LP11b) reaches 25.49 and maximum lambda(cc), is <= 1530 nm. Compared with one-ring structure (ORS), DRS has much more space to enlarge core pitch (Lambda) so that lower XT can be achieved. Furthermore, DRS has less confinement degree on mode than square lattice structure (SLS) if A and cladding diameter (D-cl) are set at similar values. It means that it is easier for DRS to make sure lambda(cc) would not be larger than the lower limit of bands. In this paper, DRS is proved as a suitable core arrangement for 3-mode x 12-core FM-MCF. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 36
页数:7
相关论文
共 22 条
[1]   Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber [J].
Hayashi, Tetsuya ;
Taru, Toshiki ;
Shimakawa, Osamu ;
Sasaki, Takashi ;
Sasaoka, Eisuke .
OPTICS EXPRESS, 2011, 19 (17) :16576-16592
[2]  
Kobayashi T., 2013, P 39 EUR C OPT COMM
[3]   Analytical Expression of Average Power-Coupling Coefficients for Estimating Intercore Crosstalk in Multicore Fibers [J].
Koshiba, Masanori ;
Saitoh, Kunimasa ;
Takenaga, Katsuhiro ;
Matsuo, Shoichiro .
IEEE PHOTONICS JOURNAL, 2012, 4 (05) :1987-1995
[4]   Multi- core fiber design and analysis: coupled-mode theory and coupled-power theory [J].
Koshiba, Masanori ;
Saitoh, Kunimasa ;
Takenaga, Katsuhiro ;
Matsuo, Shoichiro .
OPTICS EXPRESS, 2011, 19 (26) :102-111
[5]  
Matsuo S., 2013, P OPT FIB COMM C NAT, P3, DOI DOI 10.1364/OFC.2013.OM3I.3
[6]   Large-effective-area ten-core fiber with cladding diameter of about 200 μm [J].
Matsuo, Shoichiro ;
Takenaga, Katsuihiro ;
Arakawa, Yoko ;
Sasaki, Yusuke ;
Taniagwa, Shoji ;
Saitoh, Kunimasa ;
Koshiba, Masanori .
OPTICS LETTERS, 2011, 36 (23) :4626-4628
[7]  
Mizuno T., 2014, P OPT FIB COMM C OFC
[8]  
Morioka T., 2009, OECC2009 HONG KONG C
[9]   Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers [J].
Saitoh, K ;
Koshiba, M .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (07) :927-933
[10]   Multicore Fiber Technology [J].
Saitoh, Kunimasa ;
Matsuo, Shoichiro .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2016, 34 (01) :55-66