Algorithm of construction of effective explicit methods for structurally partitioned systems of ordinary differential equations

被引:2
作者
Olemskoy, I., V [1 ]
Eremin, A. S. [1 ]
机构
[1] St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
来源
VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA | 2021年 / 17卷 / 04期
关键词
partitioned methods; structural partitioning; order conditions; explicit Runge-Kutta; multischeme methods; sixth order method; RUNGE-KUTTA METHODS;
D O I
10.21638/11701/spbu10.2021.404
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Systems of ordinary differential equations partitioned on base of their right-hand side dependencies on the unknown functions are considered. Explicit multischeme RungeKutta methods for such systems are presented. These methods require fewer right-hand side computations (stages) than classic single-scheme Runge Kutta methods to provide the same order of convergence. The full system of order conditions is presented. This system is reduced to several independent linear systems with help of the simplifying relations. The algorithm of computing the order conditions system solution with six free parameters is given. A particular choice of free parameters and the corresponding computational scheme are presented. The advantage of the presented methods is shown by the numerical comparison to the known classic six order method by J. C. Butcher.
引用
收藏
页码:353 / 369
页数:17
相关论文
共 22 条
  • [1] [Anonymous], 2008, SOLVING ORDINARY DIF
  • [2] Butcher J. C., 1964, J. Austral. Math. Soc, V4, P179, DOI 10.1017/S1446788700023387
  • [3] Butcher J. C., 2016, NUMERICAL METHODS OR, DOI DOI 10.1002/9781119121534
  • [4] An Embedded Method for Integrating Systems of Structurally Separated Ordinary Differential Equations
    Eremin, A. S.
    Olemskoy, I. V.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2010, 50 (03) : 414 - 427
  • [5] Economical Sixth Order Runge-Kutta Method for Systems of Ordinary Differential Equations
    Eremin, Alexey S.
    Kovrizhnykh, Nikolai A.
    Olemskoy, Igor, V
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2019, PT I: 19TH INTERNATIONAL CONFERENCE, SAINT PETERSBURG, RUSSIA, JULY 1-4, 2019, PROCEEDINGS, PT I, 2019, 11619 : 89 - 102
  • [6] An explicit one-step multischeme sixth order method for systems of special structure
    Eremin, Alexey S.
    Kovrizhnykh, Nikolai A.
    Olemskoy, Igor, V
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 347 : 853 - 864
  • [7] Multirate generalized additive Runge Kutta methods
    Guenther, Michael
    Sandu, Adrian
    [J]. NUMERISCHE MATHEMATIK, 2016, 133 (03) : 497 - 524
  • [8] HAIRER E., 2002, SOLVING ORDINARY DIF
  • [9] PARTIALLY IMPLICIT METHOD FOR LARGE STIFF SYSTEMS OF ODES WITH ONLY FEW EQUATIONS INTRODUCING SMALL TIME-CONSTANTS
    HOFER, E
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (05) : 645 - 663
  • [10] Kalogiratou Z., 2011, Recent Adv. Comput. Appl. Math, P169, DOI [10.1007/978-90-481-9981-5_8, DOI 10.1007/978-90-481-9981-5_8]