Noncyclic division algebras over fields of Brauer dimension one

被引:1
作者
Brussel, Eric [1 ]
机构
[1] Calif Polytech State Univ San Luis Obispo, Dept Math, San Luis Obispo, CA 93405 USA
关键词
Brauer group; Noncyclic division algebras; Cyclic division algebras; Brauer dimension; Symbol length; Period-index; Higher dimensional local field; Absolutely stable field; PERIOD-INDEX PROBLEM; U-INVARIANT;
D O I
10.1016/j.aim.2020.107058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a complete discretely valued field of rank one, with residue field Q(p). It is well known that period equals index in Br(K). We prove that when p = 2 there exist noncyclic K-division algebras of every 2-power degree divisible by four. Otherwise, every K-division algebra is cyclic. This gives the first published example of a field whose Brauer dimension and cyclic length are not equal. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:10
相关论文
共 30 条
[1]   Non-cyclic algebras of degree and exponent four [J].
Albert, A. Adrian .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1933, 35 (1-4) :112-121
[2]  
[Anonymous], [No title captured]
[3]  
[Anonymous], [No title captured]
[4]  
[Anonymous], 2013, Algebraic number theory
[5]   Cohomological obstruction theory for Brauer classes and the period-index problem [J].
Antieau, Benjamin .
JOURNAL OF K-THEORY, 2011, 8 (03) :419-435
[6]  
ARASON JK, 1989, T AM MATH SOC, V313, P843
[7]   Open problems on central simple algebras [J].
Auel, Asher ;
Brussel, Eric ;
Garibaldi, Skip ;
Vishne, Uzi .
TRANSFORMATION GROUPS, 2011, 16 (01) :219-264
[9]   CYCLIC LENGTH IN THE TAME BRAUER GROUP OF THE FUNCTION FIELD OF A p-ADIC CURVE [J].
Brussel, Eric ;
McKinnie, Kelly ;
Tengan, Eduardo .
AMERICAN JOURNAL OF MATHEMATICS, 2016, 138 (02) :251-286
[10]   The division algebras and Brauer group of a strictly henselian field [J].
Brussel, ES .
JOURNAL OF ALGEBRA, 2001, 239 (01) :391-411