Sonine Formulas and Intertwining Operators in Dunkl Theory

被引:3
作者
Roesler, Margit [1 ]
Voit, Michael [2 ]
机构
[1] Univ Paderborn, Inst Math, Warburger Str 100, D-100 Paderborn, Germany
[2] Tech Univ Dortmund, Fak Math, Vogelpothsweg 87, D-44221 Dortmund, Germany
关键词
HYPERGEOMETRIC-FUNCTIONS; INTEGRAL FORMULA; BESSEL-FUNCTIONS; POLYNOMIALS; POSITIVITY;
D O I
10.1093/imrn/rnz313
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V-k denote Dunkl's intertwining operator associated with some root system R and multiplicity k. For two multiplicities k, k' on R, we study the intertwiner V-k',V-k = V-k' omicron V-k(-1) between Dunkl operators with multiplicities k and k'. It has been a long-standing conjecture that V-k',V-k is positive if k' >= k >= 0. We disprove this conjecture by constructing counterexamples for root system B-n. This matter is closely related to the existence of Sonine-type integral representations between Dunkl kernels and Bessel functions with different multiplicities. In our examples, such Sonine formulas do not exist. As a consequence, we obtain necessary conditions on Sonine formulas for Heckman-Opdam hypergeometric functions of type BCn and conditions for positive branching coefficients between multivariable Jacobi polynomials.
引用
收藏
页码:13202 / 13230
页数:29
相关论文
共 42 条
[1]  
Askey R., 1975, Orthogonal polynomials and special functions
[2]  
Askey R., 1970, STUDIES APPL MATH WA, V6, P64
[3]   The Calogero-Sutherland model and generalized classical polynomials [J].
Baker, TH ;
Forrester, PJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 188 (01) :175-216
[4]   CERTAIN HYPERGEOMETRIC-SERIES RELATED TO THE ROOT SYSTEM-BC [J].
BEERENDS, RJ ;
OPDAM, EM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 339 (02) :581-609
[5]   The wave equation for Dunkl operators [J].
Ben Saïd, S ;
Orsted, B .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2005, 16 (3-4) :351-391
[6]  
Billingsley P., 1999, CONVERGE PROBAB MEAS, V2nd ed.
[7]   Paley-Wiener theorems for the Dunkl transform [J].
de Jeu, Marcel .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (10) :4225-4250
[8]   THE DUNKL TRANSFORM [J].
DEJEU, MFE .
INVENTIONES MATHEMATICAE, 1993, 113 (01) :147-162
[9]  
Dunkl C.F., 1992, Contemp. Math., V138, P123