On some new Hardy-type inequalities

被引:5
作者
Benaissa, Bouharket [1 ,2 ]
Sarikaya, Mehmet Zeki [3 ]
Senouci, Abdelkader [2 ,4 ]
机构
[1] Univ Tiaret Algeria, Fac Mat Sci, Tiaret, Algeria
[2] Univ Tiaret Algeria, Lab Informat & Math, Tiaret, Algeria
[3] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
[4] Univ Tiaret Algeria, Fac Math & Informat, Tiaret, Algeria
关键词
Hardy-type integral inequality; Holder's inequality; weight function;
D O I
10.1002/mma.6503
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give some new types of the classical Hardy integral inequality by including a second parameter q and using weighted mean operators S-1 := (S-1)(g)(w) and S-2 := (S-2)(g)(w) defined by S-1(x) = 1/W(x) integral(x)(a) w(t)g(f(t))dt, S-2(x) = integral(x)(a) w(t)/W(t)g(f(t))dt, with W(x) = integral(x)(0) w(t)dt, for x is an element of(0,+infinity), where w is a weight function and g is a real continuous function on (0,+infinity).
引用
收藏
页码:8488 / 8495
页数:8
相关论文
共 18 条
[1]   Some Hardy-type inequalities [J].
Cheung, WS ;
Hanjs, Z ;
Pecaric, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 250 (02) :621-634
[2]  
Halim B, 2019, INT J OPEN PROBLEMS, V12, P9
[3]  
Hanjes Z, 2000, J MATH, V31, P149
[4]  
Hardy G., 1952, Inequalities, Cambridge
[5]  
Hardy G.H., 1928, Messenger Math, V57, P12
[6]   Note on a theorem of Hilbert. [J].
Hardy, GH .
MATHEMATISCHE ZEITSCHRIFT, 1920, 6 :314-317
[7]  
Izumi M., 1969, TOHOKU MATH J, V21, P601, DOI DOI 10.2748/TMJ/1178242904
[8]  
Kufner A., 2007, HARDY INEQUALITY ITS
[9]  
KUFNER A., 2003, Weighted inequalities of Hardy type
[10]  
Moazzen A, 2014, INT J NONLINEAR ANAL, V5, P98