Chaos and its quantization in dynamical Jahn-Teller systems

被引:16
作者
Yamasaki, H [1 ]
Natsume, Y
Terai, A
Nakamura, K
机构
[1] Chiba Univ, Grad Sch Sci & Technol, Inage Ku, Chiba 2638522, Japan
[2] Osaka City Univ, Dept Appl Phys, Sumiyoshi Ku, Osaka 5588585, Japan
来源
PHYSICAL REVIEW E | 2003年 / 68卷 / 04期
关键词
D O I
10.1103/PhysRevE.68.046201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the E(g)circle timese(g) Jahn-Teller system for the purpose of revealing the nature of quantum chaos in crystals. This system simulates the interaction between the nuclear vibrational modes and the electronic motion in non-Kramers doublets for multiplets of transition-metal ions. Inclusion of the anharmonic potential due to the trigonal symmetry in crystals makes the system nonintegrable and chaotic. Besides the quantal analysis of the transition from Poisson to Wigner level statistics with increasing the strength of anharmonicity, we study the effect of chaos on the electronic orbital angular momentum and explore the magnetic g-factor as a function of the system's energy. The regular oscillation of this factor changes to a rapidly decaying irregular oscillation by increasing the anharmonicity (chaoticity).
引用
收藏
页数:8
相关论文
共 29 条
[1]  
[Anonymous], 2012, Introduction to quantum mechanics with applications to chemistry
[2]  
[Anonymous], 1989, GEOMETRIC PHASE PHYS
[3]  
ARNOLD VI, 1974, MATH METHODS CLASSIC
[4]  
BERGGREN KF, 2001, QUANTUM CHAOS Y2K
[6]   SEMICLASSICAL LEVEL SPACINGS WHEN REGULAR AND CHAOTIC ORBITS COEXIST [J].
BERRY, MV ;
ROBNIK, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (12) :2413-2421
[7]   LEVEL CLUSTERING IN REGULAR SPECTRUM [J].
BERRY, MV ;
TABOR, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 356 (1686) :375-394
[8]  
BLUMEL R, 1997, CHAOS ATOMIC PHYSICS
[9]   CHARACTERIZATION OF CHAOTIC QUANTUM SPECTRA AND UNIVERSALITY OF LEVEL FLUCTUATION LAWS [J].
BOHIGAS, O ;
GIANNONI, MJ ;
SCHMIT, C .
PHYSICAL REVIEW LETTERS, 1984, 52 (01) :1-4
[10]  
BRACK M, 1997, SEMICLASSICAL PHYSIC