TIKHONOV REGULARIZATION WITHIN ENSEMBLE KALMAN INVERSION

被引:50
作者
Chada, Neil K. [1 ]
Stuart, Andrew M. [2 ]
Tong, Xin T. [3 ]
机构
[1] Natl Univ Singapore, Dept Appl Probabil & Stat, Singapore 117546, Singapore
[2] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
[3] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
基金
美国国家科学基金会;
关键词
Tikhonov regularization; ensemble Kalman inversion; Bayesian inverse problems; long-term behavior; DATA ASSIMILATION; FILTER;
D O I
10.1137/19M1242331
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Ensemble Kalman inversion is a parallelizable methodology for solving inverse or parameter estimation problems. Although it is based on ideas from Kalman filtering, it may be viewed as a derivative-free optimization method. In its most basic form it regularizes ill-posed inverse problems through the subspace property: the solution found is in the linear span of the initial ensemble employed. In this work we demonstrate how further regularization can be imposed, incorporating prior information about the underlying unknown. In particular we study how to impose Tikhonov-like Sobolev penalties. As well as introducing this modified ensemble Kalman inversion methodology, we also study its continuous-time limit, proving ensemble collapse; in the language of multi-agent optimization this may be viewed as reaching consensus. We also conduct a suite of numerical experiments to highlight the benefits of Tikhonov regularization in the ensemble inversion context.
引用
收藏
页码:1263 / 1294
页数:32
相关论文
共 45 条
[1]   Sparsity-promoting and edge-preserving maximum a posteriori estimators in non-parametric Bayesian inverse problems [J].
Agapiou, Sergios ;
Burger, Martin ;
Dashti, Masoumeh ;
Helin, Tapio .
INVERSE PROBLEMS, 2018, 34 (04)
[2]   Ensemble Kalman methods with constraints [J].
Albers, David J. ;
Blancquart, Paul-Adrien ;
Levine, Matthew E. ;
Seylabi, Elnaz Esmaeilzadeh ;
Stuart, Andrew .
INVERSE PROBLEMS, 2019, 35 (09)
[3]  
[Anonymous], 1996, MATH APPL
[4]   Modern regularization methods for inverse problems [J].
Benning, Martin ;
Burger, Martin .
ACTA NUMERICA, 2018, 27 :1-111
[5]   A STRONGLY CONVERGENT NUMERICAL SCHEME FROM ENSEMBLE KALMAN INVERSION [J].
Bloemker, Dirk ;
Schillings, Claudia ;
Wacker, Philipp .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (04) :2537-2562
[6]  
Chada N. K., 2019, PREPRINT
[7]  
Chada N. K., ADAPTIVE LEARNING ST
[8]   Parameterizations for ensemble Kalman inversion [J].
Chada, Neil K. ;
Iglesias, Marco A. ;
Roininen, Lassi ;
Stuart, Andrew M. .
INVERSE PROBLEMS, 2018, 34 (05)
[9]   Ensemble Randomized Maximum Likelihood Method as an Iterative Ensemble Smoother [J].
Chen, Yan ;
Oliver, Dean S. .
MATHEMATICAL GEOSCIENCES, 2012, 44 (01) :1-26
[10]   MAP estimators and their consistency in Bayesian nonparametric inverse problems [J].
Dashti, M. ;
Law, K. J. H. ;
Stuart, A. M. ;
Voss, J. .
INVERSE PROBLEMS, 2013, 29 (09)