Thermal conductivity of monolayer hexagonal boron nitride nanoribbons

被引:92
作者
Tabarraei, Alireza [1 ]
机构
[1] Univ N Carolina, Dept Mech Engn, 9201 Univ City Blvd, Charlotte, NC 28223 USA
关键词
Hexagonal boron nitride; Heat conductivity; Nonequilibrium molecular dynamics; Two-dimensional materials; GRAPHENE NANORIBBONS;
D O I
10.1016/j.commatsci.2015.06.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using reverse nonequilibrium molecular dynamics simulations (RNEMD), the thermal conductivity of monolayer hexagonal boron nitride (h-BN) nanoribbons as a function of length, width and edge chirality are investigated. While width effects on the thermal conductivity are not considerable, by increasing the length of ribbons their thermal conductivity significantly increases. The thermal conductivity of infinitely long armchair and zigzag nanoribbons are respectively predicted to be 277.78 W/m K and 588.24 W/m K, which are about one order of magnitude less than those of graphene. Moreover, we have studied the impact of monovanacies and Stone-Wales defects. While both monovacancies and Stone-Wales defects drastically lower the thermal conductivity of BN ribbons, the Stone-Wales defects have a more sever impact on the thermal transport properties of h-BN ribbons. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:66 / 71
页数:6
相关论文
共 39 条
[1]   Thermal rectification in nanosized model systems: A molecular dynamics approach [J].
Alaghemandi, Mohammad ;
Leroy, Frederic ;
Mueller-Plathe, Florian ;
Boehm, Michael C. .
PHYSICAL REVIEW B, 2010, 81 (12)
[2]   Magnetic boron nitride nanoribbons with tunable electronic properties [J].
Barone, Veronica ;
Peralta, Juan E. .
NANO LETTERS, 2008, 8 (08) :2210-2214
[3]   Effective mechanical properties of hexagonal boron nitride nanosheets [J].
Boldrin, L. ;
Scarpa, F. ;
Chowdhury, R. ;
Adhikari, S. .
NANOTECHNOLOGY, 2011, 22 (50)
[4]   Boron nitride nanotubes: Pronounced resistance to oxidation [J].
Chen, Y ;
Zou, J ;
Campbell, SJ ;
Le Caer, G .
APPLIED PHYSICS LETTERS, 2004, 84 (13) :2430-2432
[5]   Spin Filtering and Magneto-Resistive Effect at the Graphene/h-BN Ribbon Interface [J].
Dubois, Simon Mutien-Marie ;
Declerck, Xavier ;
Charlier, J. -C. ;
Payne, Michael C. .
ACS NANO, 2013, 7 (05) :4578-4585
[6]  
Ghosh S., 2008, APPL PHYS LETT, V92
[7]   Thermal conductivity of graphene nanoribbons [J].
Guo, Zhixin ;
Zhang, Dier ;
Gong, Xin-Gao .
APPLIED PHYSICS LETTERS, 2009, 95 (16)
[8]   Mechanical and thermal transport properties of graphene with defects [J].
Hao, Feng ;
Fang, Daining ;
Xu, Zhiping .
APPLIED PHYSICS LETTERS, 2011, 99 (04)
[9]   Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: A Molecular Dynamics Study [J].
Hu, Jiuning ;
Ruan, Xiulin ;
Chen, Yong P. .
NANO LETTERS, 2009, 9 (07) :2730-2735
[10]   Band gap tunning in BN-doped graphene systems with high carrier mobility [J].
Kaloni, T. P. ;
Joshi, R. P. ;
Adhikari, N. P. ;
Schwingenschloegl, U. .
APPLIED PHYSICS LETTERS, 2014, 104 (07)