Backward stochastic differential equations with locally Lipschitz coefficient

被引:42
作者
Bahlali, K
机构
[1] Univ Toulon & Var, UFR Sci, F-83957 La Garde, France
[2] CNRS Marseille Luminy, Ctr Phys Theor, F-13288 Marseille 9, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2001年 / 333卷 / 05期
关键词
D O I
10.1016/S0764-4442(01)02063-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with multidimensional backward stochastic differential equations (BSDE) with locally Lipschitz (in both variables y, z) and sublinear growth coefficient and, an only square integrable terminale data. Let B (O, N) denote the ball of R(d) x R(d x r) and L(N) the Lipschitz constant on B (O, N) of the coefficient. We prove that if L(N) similar to root logN, then the corresponding BSDE has a unique solution. This is the first work which deals with multidimensional BSDE with a local assumption on the coefficient. (C) 2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:481 / 486
页数:6
相关论文
共 17 条
[1]  
BAHLALI K, 2001, MONTE CARLO METHODS
[2]  
BRIAND P, 1999, BSDES POLYNOMIAL GRO
[3]  
Darling RWR, 1997, ANN PROBAB, V25, P1135
[4]  
Dermoune A., 1999, Stoch. Stoch. Rep, V66, P103, DOI [10.1080/17442509908834188, DOI 10.1080/17442509908834188]
[5]   Backward stochastic differential equations in finance [J].
El Karoui, N ;
Peng, S ;
Quenez, MC .
MATHEMATICAL FINANCE, 1997, 7 (01) :1-71
[6]  
Hamadene S, 1996, ANN I H POINCARE-PR, V32, P645
[7]  
HAMADENE S, 1997, PITMAN RES NOTES MAT, V364
[8]  
Hamadene S., 2000, MONT CARL 2000 C MON
[9]  
Kobylanski M, 1997, CR ACAD SCI I-MATH, V324, P81
[10]   Backward stochastic differential equations with continuous coefficient [J].
Lepeltier, JP ;
SanMartin, J .
STATISTICS & PROBABILITY LETTERS, 1997, 32 (04) :425-430