Hematite-based solar water splitting: challenges and opportunities

被引:378
作者
Lin, Yongjing [1 ]
Yuan, Guangbi [1 ]
Sheehan, Stafford [1 ]
Zhou, Sa [1 ]
Wang, Dunwei [1 ]
机构
[1] Merkert Chem Ctr, Dept Chem, Chestnut Hill, MA USA
基金
美国国家科学基金会;
关键词
VISIBLE-LIGHT; ARTIFICIAL PHOTOSYNTHESIS; HYDROGEN-PRODUCTION; ALPHA-FE2O3; FILMS; THIN-FILMS; OXIDE; ELECTRODES; PHOTOELECTROCHEMISTRY; NANOSTRUCTURES; PHOTOANODES;
D O I
10.1039/c1ee01850g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As the most commonly encountered form of iron oxide in nature, hematite is a semiconducting crystal with an almost ideal bandgap for solar water splitting. Compelled by this unique property and other advantages, including its abundance in the Earth's crust and its stability under harsh chemical conditions, researchers have studied hematite for several decades. In this perspective, we provide a concise overview of the challenges that have prevented us from actualizing the full potentials of this promising material. Particular attention is paid to the importance of efficient charge transport, the successful realization of which is expected to result in reduced charge recombination and increased quantum efficiencies. We also present a general strategy of forming heteronanostructures to help meet the charge transport challenge. The strategy is introduced within the context of two material platforms, webbed nanonets and vertically aligned transparent conductive nanotubes. Time-resolved photoconductivity measurements verify the hypothesis that the addition of conductive components indeed increases charge lifetimes. Because the heteronanostructure approach is highly versatile, it has the potential to address other issues of hematite as well and promises new opportunities for the development of efficient energy conversion using this inexpensive and stable material.
引用
收藏
页码:4862 / 4869
页数:8
相关论文
共 50 条
  • [41] A scalable colloidal approach to prepare hematite films for efficient solar water splitting
    Zong, Xu
    Thaweesak, Supphasin
    Xu, Hongyi
    Xing, Zheng
    Zou, Jin
    Lu, Gaoqing
    Wang, Lianzhou
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (29) : 12314 - 12321
  • [42] Ti-doped hematite nanostructures for solar water splitting with high efficiency
    Deng, Jiujun
    Zhong, Jun
    Pu, Aiwu
    Zhang, Duo
    Li, Ming
    Sun, Xuhui
    Lee, Shuit-Tong
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (08)
  • [43] A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting
    Ahmed, Mahmoud G.
    Kretschmer, Imme E.
    Kandiel, Tarek A.
    Ahmed, Amira Y.
    Rashwan, Farouk A.
    Bahnemann, Detlef W.
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (43) : 24053 - 24062
  • [44] Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting
    Li, Xianglin
    Bassi, Prince Saurabh
    Boix, Pablo P.
    Fang, Yanan
    Wong, Lydia Helena
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (31) : 16960 - 16966
  • [45] Decoupling Feature Size and Functionality in Solution-Processed, Porous Hematite Electrodes for Solar Water Splitting
    Brillet, Jeremie
    Gratzel, Michael
    Sivula, Kevin
    NANO LETTERS, 2010, 10 (10) : 4155 - 4160
  • [46] The potential versus current state of water splitting with hematite
    Zandi, Omid
    Hamann, Thomas W.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (35) : 22485 - 22503
  • [47] Ultrathin planar hematite film for solar photoelectrochemical water splitting
    Liu, Dong
    Bierman, David M.
    Lenert, Andrej
    Yu, Hai-Tong
    Yang, Zhen
    Wang, Evelyn N.
    Duan, Yuan-Yuan
    OPTICS EXPRESS, 2015, 23 (24): : A1491 - A1498
  • [48] Ultrathin hematite film for photoelectrochemical water splitting enhanced with reducing graphene oxide
    Wu, Quanping
    Zhao, Jun
    Liu, Kan
    Wang, Hongyan
    Sun, Zhe
    Li, Ping
    Xue, Song
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (21) : 6763 - 6770
  • [49] Heteroepitaxial hematite photoanodes as a model system for solar water splitting
    Grave, Daniel A.
    Dotan, Hen
    Levy, Yossi
    Piekner, Yifat
    Scherrer, Barbara
    Malviya, Kirtiman Deo
    Rothschild, Avner
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (08) : 3052 - 3060
  • [50] Crystallinity Engineering of Hematite Nanorods for High-Efficiency Photoelectrochemical Water Splitting
    Wang, Degao
    Zhang, Yuying
    Peng, Cheng
    Wang, Jianqiang
    Huang, Qing
    Su, Shao
    Wang, Lianhui
    Huang, Wei
    Fan, Chunhai
    ADVANCED SCIENCE, 2015, 2 (04):