Thermal Flaw Detection Scanner for Testing Large-Sized Flat Products Made of Composite Materials

被引:3
作者
Chulkov, A. O. [1 ]
Vavilov, V. P. [1 ]
Nesteruk, D. A. [1 ]
Shagdyrov, B., I [1 ]
机构
[1] Tomsk Polytech Univ, Tomsk 634050, Russia
基金
俄罗斯基础研究基金会; 俄罗斯科学基金会;
关键词
self-propelled thermal flaw detector; thermal nondestructive testing; infrared thermography; scanning; composite material; large-sized part; defect; delamination; DEFECTS; THERMOGRAPHY; DIMENSION;
D O I
10.1134/S1061830922040040
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A self-propelled thermal flaw detector has been developed for testing large-sized flat parts by means of thermal scanning that provides higher efficiency and test performance than conventional thermal testing scheme over individual zones. The flaw detector is designed to detect delaminations, impact damage, and foreign inclusions in composite materials and can be used to test for corrosion in metal shells, providing continuous monitoring with a performance of up to 20 m(2)/h.
引用
收藏
页码:301 / 307
页数:7
相关论文
共 19 条
[1]   Method and Equipment for Infrared and Ultrasonic Thermographic Testing of Large-Sized Complex-Shaped Composite Products [J].
Chulkov, A. O. ;
Nesteruk, D. A. ;
Shagdyrov, B., I ;
Vavilov, V. P. .
RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 2021, 57 (07) :619-626
[2]   The Detection and Characterization of Defects in Metal/Non-metal Sandwich Structures by Thermal NDT, and a Comparison of Areal Heating and Scanned Linear Heating by Optical and Inductive Methods [J].
Chulkov, A. O. ;
Tuschl, C. ;
Nesteruk, D. A. ;
Oswald-Tranta, B. ;
Vavilov, V. P. ;
Kuimova, M. V. .
JOURNAL OF NONDESTRUCTIVE EVALUATION, 2021, 40 (02)
[3]   Optimizing input data for training an artificial neural network used for evaluating defect depth in infrared thermographic nondestructive testing [J].
Chulkov, A. O. ;
Nesteruk, D. A. ;
Vavilov, V. P. ;
Moskovchenko, A. I. ;
Saeed, N. ;
Omar, M. .
INFRARED PHYSICS & TECHNOLOGY, 2019, 102
[4]  
Cramer K., 2019, APPL LINE SCAN THERM
[5]   Thermographic detection and quantitative characterization of corrosion by application of thermal line source [J].
Cramer, KE ;
Winfree, WP .
THERMOSENSE XX, 1998, 3361 :291-300
[6]  
Denisov S.S, 1975, DEFEKTOSKOPIYA, P116
[7]   Wheeled Robot Dedicated to the Evaluation of the Technical Condition of Large-Dimension Engineering Structures [J].
Domin, Jaroslaw ;
Gorski, Marcin ;
Bialecki, Ryszard ;
Zajac, Jakub ;
Grzyb, Krzysztof ;
Kielan, Pawel ;
Adamczyk, Wojciech ;
Ostrowski, Ziemowit ;
Wienchol, Paulina ;
Lamkowski, Kamil ;
Kaminski, Jakub ;
Doledutko, Mateusz ;
Rosiek, Radoslaw .
ROBOTICS, 2020, 9 (02)
[8]   Two-stage neural algorithm for defect detection and characterization uses an active thermography [J].
Dudzik, Sebastian .
INFRARED PHYSICS & TECHNOLOGY, 2015, 71 :187-197
[9]   Artificial Neural Networks and Infrared Thermography for fiber orientation assessment [J].
Fernandes, Henrique Coelho ;
Zhang, Hai ;
Ibarra-Castanedo, Clemente ;
Maldague, Xavier .
2017 6TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2017, :210-215
[10]  
Gavinsky Yu.V, 1976, DEFEKTOSKOPIYA, P40