Bond-weighted tensor renormalization group

被引:15
作者
Adachi, Daiki [1 ]
Okubo, Tsuyoshi [2 ,3 ]
Todo, Synge [1 ,2 ,4 ]
机构
[1] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan
[2] Univ Tokyo, Inst Phys Intelligence, Tokyo 1130033, Japan
[3] JST, PRESTO, Kawaguchi, Saitama 3320012, Japan
[4] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
基金
日本学术振兴会;
关键词
Tensors;
D O I
10.1103/PhysRevB.105.L060402
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose an improved tensor renormalization-group (TRG) algorithm, the bond-weighted TRG (BTRG). In BTRG, we generalize the conventional TRG by introducing bond weights on the edges of the tensor network. We show that BTRG outperforms the conventional TRG and the higher-order tensor renormalization group with the same bond dimension, whereas its computation time is almost the same as that of TRG. Furthermore, BTRG can have nontrivial fixed-point tensors at an optimal hyperparameter. We demonstrate that the singular value spectrum obtained by BTRG is invariant under the renormalization procedure in the case of the two-dimensional Ising model at the critical point. This property indicates that BTRG performs the tensor contraction with high accuracy whereas keeping the scale-invariant structure of tensors.
引用
收藏
页数:6
相关论文
共 32 条
[1]   Anisotropic tensor renormalization group [J].
Adachi, Daiki ;
Okubo, Tsuyoshi ;
Todo, Synge .
PHYSICAL REVIEW B, 2020, 102 (05)
[2]   Renormalization Group Flows of Hamiltonians Using Tensor Networks [J].
Bal, M. ;
Marien, M. ;
Haegeman, J. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2017, 118 (25)
[3]   Partial Order and Finite-Temperature Phase Transitions in Potts Models on Irregular Lattices [J].
Chen, Q. N. ;
Qin, M. P. ;
Chen, J. ;
Wei, Z. C. ;
Zhao, H. H. ;
Normand, B. ;
Xiang, T. .
PHYSICAL REVIEW LETTERS, 2011, 107 (16)
[4]   Towards computational insights into the large-scale structure of spin foams [J].
Dittrich, Bianca ;
Eckert, Frank C. .
LOOPS 11: NON-PERTURBATIVE / BACKGROUND INDEPENDENT QUANTUM GRAVITY, 2012, 360
[5]   Algorithms for tensor network renormalization [J].
Evenbly, G. .
PHYSICAL REVIEW B, 2017, 95 (04)
[6]   Local Scale Transformations on the Lattice with Tensor Network Renormalization [J].
Evenbly, G. ;
Vidal, G. .
PHYSICAL REVIEW LETTERS, 2016, 116 (04)
[7]   Tensor Network Renormalization [J].
Evenbly, G. ;
Vidal, G. .
PHYSICAL REVIEW LETTERS, 2015, 115 (18)
[8]   Gauge fixing, canonical forms, and optimal truncations in tensor networks with closed loops [J].
Evenbly, Glen .
PHYSICAL REVIEW B, 2018, 98 (08)
[9]   Area law and real-space renormalization [J].
Ferris, Andrew J. .
PHYSICAL REVIEW B, 2013, 87 (12)
[10]   Phase transition of the Ising model on a fractal lattice [J].
Genzor, Jozef ;
Gendiar, Andrej ;
Nishino, Tomotoshi .
PHYSICAL REVIEW E, 2016, 93 (01)