Impacts of aerosol-photolysis interaction and aerosol-radiation feedback on surface-layer ozone in North China during multi-pollutant air pollution episodes

被引:20
作者
Yang, Hao [1 ]
Chen, Lei [1 ]
Liao, Hong [1 ]
Zhu, Jia [1 ]
Wang, Wenjie [2 ]
Li, Xin [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Sch Environm Sci & Engn, Jiangsu Key Lab Atmospher Environm Monitoring & P, Nanjing 210044, Peoples R China
[2] Peking Univ, Coll Environm Sci & Engn, State Joint Key Lab Environm Simulat & Pollut Con, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
BEIJING-TIANJIN-HEBEI; YANGTZE-RIVER DELTA; BOUNDARY-LAYER; PART I; HAZE EVENT; MODEL; CHEMISTRY; DYNAMICS;
D O I
10.5194/acp-22-4101-2022
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We examined the impacts of aerosol-radiation interactions, including the effects of aerosol-photolysis interaction (API) and aerosol-radiation feedback (ARF), on surface-layer ozone (O-3) concentrations during four multi-pollutant air pollution episodes characterized by high O-3 and PM2.5 levels during 28 July to 3 August 2014 (Episode 1), 8-13 July 2015 (Episode2), 5-11 June 2016 (Episode3), and 28 June to 3 July 2017 (Episode4) in North China, by using the Weather Research and Forecasting with Chemistry (WRF-Chem) model embedded with an integrated process analysis scheme. Our results show that API and ARF reduced the daytime shortwave radiative fluxes at the surface by 92.4-102.9 Wm(-2) and increased daytime shortwave radiative fluxes in the atmosphere by 72.8-85.2 Wm(-2), as the values were averaged over the complex air pollution areas (CAPAs) in each of the four episodes. As a result, the stabilized atmosphere decreased the daytime planetary boundary layer height and 10 m wind speed by 129.0-249.0 m and 0.05-0.15 m s(-1), respectively, in CAPAs in the four episodes. Aerosols were simulated to reduce the daytime near-surface photolysis rates of J[NO2] and J[(OD)-D-1] by 1.8 x 10(-3) -2.0 x 10(-3) and 5.7 x 10(-6) -6.4 x 10(-6) s(-1), respectively, in CAPAs in the four episodes. All of the four episodes show the same conclusion, which is that the reduction in 03 by API is larger than that by ARF. API (ARF) was simulated to change daytime surface-layer O-3 concentrations by -8.5 ppb (parts per billion; -2.9 ppb), -10.3 ppb (-1.0 ppb), -9.1 ppb (-0.9 ppb), and -11.4 ppb (+0.7 ppb) in CAPAs of the four episodes, respectively. Process analysis indicated that the weakened O-3 chemical production made the greatest contribution to API effect, while the reduced vertical mixing was the key process for ARF effect. Our conclusions suggest that future PM2.5 reductions may lead to O-3 increases due to the weakened aerosol-radiation interactions, which should be considered in air quality planning.
引用
收藏
页码:4101 / 4116
页数:16
相关论文
共 57 条
  • [1] AEROSOLS, CLOUD MICROPHYSICS, AND FRACTIONAL CLOUDINESS
    ALBRECHT, BA
    [J]. SCIENCE, 1989, 245 (4923) : 1227 - 1230
  • [2] Use of Combined Observational-and Model-Derived Photochemical Indicators to Assess the O3-NOx-VOC System Sensitivity in Urban Areas
    Carrillo-Torres, Edson R.
    Hernandez-Paniagua, Ivan Y.
    Mendoza, Alberto
    [J]. ATMOSPHERE, 2017, 8 (02):
  • [3] Chen F, 2001, MON WEATHER REV, V129, P569, DOI 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO
  • [4] 2
  • [5] Assessing the formation and evolution mechanisms of severe haze pollution in the Beijing-Tianjin-Hebei region using process analysis
    Chen, Lei
    Zhu, Jia
    Liao, Hong
    Gao, Yi
    Qiu, Yulu
    Zhang, Meigen
    Liu, Zirui
    Li, Nan
    Wang, Yuesi
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (16) : 10845 - 10864
  • [6] China National Environmental Monitoring Centre (CNEMC), AIR POLL DAT CHIN
  • [7] Co-occurrence of ozone and PM2.5 pollution in the Yangtze River Delta over 2013-2019: Spatiotemporal distribution and meteorological conditions
    Dai, Huibin
    Zhu, Jia
    Liao, Hong
    Li, Jiandong
    Liang, Muxue
    Yang, Yang
    Yue, Xu
    [J]. ATMOSPHERIC RESEARCH, 2021, 249
  • [8] The impact of aerosols on solar ultraviolet radiation and photochemical smog
    Dickerson, RR
    Kondragunta, S
    Stenchikov, G
    Civerolo, KL
    Doddridge, BG
    Holben, BN
    [J]. SCIENCE, 1997, 278 (5339) : 827 - 830
  • [9] Emery C., 2001, ENHANCED METEOROLOGI
  • [10] Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4)
    Emmons, L. K.
    Walters, S.
    Hess, P. G.
    Lamarque, J. -F.
    Pfister, G. G.
    Fillmore, D.
    Granier, C.
    Guenther, A.
    Kinnison, D.
    Laepple, T.
    Orlando, J.
    Tie, X.
    Tyndall, G.
    Wiedinmyer, C.
    Baughcum, S. L.
    Kloster, S.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2010, 3 (01) : 43 - 67