Operator representations on quantum spaces

被引:9
作者
Bauer, C [1 ]
Wachter, H [1 ]
机构
[1] Univ Munich, Sekt Phys, D-80333 Munich, Germany
来源
EUROPEAN PHYSICAL JOURNAL C | 2003年 / 31卷 / 02期
关键词
D O I
10.1140/epjc/s2003-01324-0
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this article we present explicit formulae for q-differentiation on quantum spaces which could be of particular importance in physics, i.e., q-deformed Minkowski space and q-deformed Euclidean space in three or four dimensions. The calculations are based on the covariant differential calculus of these quantum spaces. Furthermore, our formulae can be regarded as a generalization of Jackson's q-derivative to three and four dimensions.
引用
收藏
页码:261 / 275
页数:15
相关论文
共 23 条
[1]  
BLOHMANN C, 2001, THESIS L MAXIMILIANS
[2]   TENSOR REPRESENTATION OF THE QUANTUM GROUP SLQ(2,C) AND QUANTUM MINKOWSKI SPACE [J].
CAROWWATAMURA, U ;
SCHLIEKER, M ;
SCHOLL, M ;
WATAMURA, S .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1990, 48 (01) :159-165
[3]  
DOBREV VK, 1995, PHYS LETT B, V346, P427
[4]   NEW Q-MINKOWSKI SPACE-TIME AND Q-MAXWELL EQUATIONS HIERARCHY FROM Q-CONFORMAL INVARIANCE [J].
DOBREV, VK .
PHYSICS LETTERS B, 1994, 341 (02) :133-138
[5]  
DRINFELD VG, 1985, DOKL AKAD NAUK SSSR, V32, P254
[6]   A Q-DIFFERENCE ANALOG OF U(G) AND THE YANG-BAXTER EQUATION [J].
JIMBO, M .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (01) :63-69
[7]  
Klimyk A., 1997, QUANTUM GROUPS THEIR
[8]   Non-commutative Euclidean and Minkowski structures [J].
Lorek, A ;
Weich, W ;
Wess, J .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1997, 76 (02) :375-386
[9]   SUQ(2) COVARIANT R-MATRICES FOR REDUCIBLE REPRESENTATIONS [J].
LOREK, A ;
SCHMIDKE, WB ;
WESS, J .
LETTERS IN MATHEMATICAL PHYSICS, 1994, 31 (04) :279-288
[10]   Gauge theory on noncommutative spaces [J].
Madore, J ;
Schraml, S ;
Schupp, P ;
Wess, J .
EUROPEAN PHYSICAL JOURNAL C, 2000, 16 (01) :161-167