Existence and multiplicity of solutions for the fractional p-Laplacian Choquard logarithmic equation involving a nonlinearity with exponential critical and subcritical growth

被引:6
作者
Boer, Eduardo de S. [1 ]
Miyagaki, Olimpio H. [1 ]
机构
[1] UFSCar Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
NONTRIVIAL SOLUTION; ELLIPTIC PROBLEM; SOBOLEV;
D O I
10.1063/5.0041474
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present work, we obtain the existence and multiplicity of nontrivial solutions for the Choquard logarithmic equation (-Delta)(p)(s)u+a vertical bar u vertical bar(p-2)u+lambda(ln vertical bar center dot vertical bar*|u|p)|u|(p-2)u=f(u) inR(N), where N = sp, s is an element of (0, 1), p > 2, a > 0, lambda > 0, and f: R -> R is a continuous nonlinearity with exponential critical and subcritical growth. We guarantee the existence of a nontrivial solution at the mountain pass level and a nontrivial ground state solution under critical and subcritical growth. Moreover, when f has subcritical growth, we prove the existence of infinitely many solutions via genus theory. Published under license by AIP Publishing.
引用
收藏
页数:20
相关论文
共 40 条
[1]  
Adams R.A., 2014, SOBOLEV SPACES
[2]   Existence of positive solution for a planar Schrodinger-Poisson system with exponential growth [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. .
JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (01)
[3]  
[Anonymous], 2010, MORSE THEORETIC ASPE
[4]   Elliptic problems involving the fractional Laplacian in RN [J].
Autuori, Giuseppina ;
Pucci, Patrizia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) :2340-2362
[5]   Three nodal solutions of singularly perturbed elliptic equations on domains without topology [J].
Bartsch, T ;
Weth, T .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (03) :259-281
[6]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[7]   Soliton dynamics for the generalized Choquard equation [J].
Bonanno, Claudio ;
d'Avenia, Pietro ;
Ghimenti, Marco ;
Squassina, Marco .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 417 (01) :180-199
[8]   The logarithmic Choquard equation: Sharp asymptotes and nondegeneracy of the groundstate [J].
Bonheure, Denis ;
Cingolani, Silvia ;
Van Schaftingen, Jean .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (12) :5255-5281
[9]  
Brezis H, 2011, UNIVERSITEXT, P1
[10]   NONTRIVIAL SOLUTION OF SEMILINEAR ELLIPTIC EQUATION WITH CRITICAL EXPONENT IN R2 [J].
CAO, DM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (3-4) :407-435