Growth of Epithelial Organoids in a Defined Hydrogel

被引:230
作者
Broguiere, Nicolas [1 ]
Isenmann, Luca [2 ]
Hirt, Christian [2 ]
Ringel, Till [2 ]
Placzek, Silja [2 ]
Cavalli, Emma [1 ]
Ringnalda, Femke [2 ]
Villiger, Lukas [2 ]
Zuellig, Richard [3 ]
Lehmann, Roger [3 ]
Rogler, Gerhard [4 ]
Heim, Markus H. [5 ,6 ]
Schueler, Julia [7 ]
Zenobi-Wong, Marcy [1 ]
Schwank, Gerald [2 ]
机构
[1] Swiss Fed Inst Technol, Dept Hlth Sci & Technol, Otto Stern Weg 7, CH-8093 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Inst Mol Hlth Sci, Otto Stern Weg 7, CH-8093 Zurich, Switzerland
[3] Univ Hosp, Div Endocrinol Diabet & Clin Nutr, CH-8091 Zurich, Switzerland
[4] Univ Zurich, Dept Gastroenterol & Hepatol, Univ Hosp Zurich, CH-8091 Zurich, Switzerland
[5] Univ Basel, Dept Biomed, Univ Hosp Basel, CH-4031 Basel, Switzerland
[6] Univ Hosp Basel, Div Gastroenterol & Hepatol, CH-4031 Basel, Switzerland
[7] Charles River Res Serv Germany GmbH, Flughafen 12, D-79108 Freiburg, Germany
基金
瑞士国家科学基金会;
关键词
fibrin; hydrogels; organoids; ENHANCES NEURITE EXTENSION; NEURONAL NETWORKS; FIBRIN GELS; CELL; PEPTIDES; MATRIGEL; MATRICES; DISEASE; MANIPULATION; GENERATION;
D O I
10.1002/adma.201801621
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Epithelial organoids are simplified models of organs grown in vitro from embryonic and adult stem cells. They are widely used to study organ development and disease, and enable drug screening in patient-derived primary tissues. Current protocols, however, rely on animal- and tumor-derived basement membrane extract (BME) as a 3D scaffold, which limits possible applications in regenerative medicine. This prompted us to study how organoids interact with their matrix, and to develop a well-defined hydrogel that supports organoid generation and growth. It is found that soft fibrin matrices provide suitable physical support, and that naturally occurring Arg-Gly-Asp (RGD) adhesion domains on the scaffold, as well as supplementation with laminin-111, are key parameters required for robust organoid formation and expansion. The possibility to functionalize fibrin via factor XIII-mediated anchoring also allows to covalently link fluorescent nanoparticles to the matrix for 3D traction force microscopy. These measurements suggest that the morphogenesis of budding intestinal organoids results from internal pressure combined with higher cell contractility in the regions containing differentiated cells compared to the regions containing stem cells. Since the fibrin/laminin matrix supports long-term expansion of all tested murine and human epithelial organoids, this hydrogel can be widely used as a defined equivalent to BME.
引用
收藏
页数:12
相关论文
共 43 条
[1]   Novel enzymatically cross-linked hyaluronan hydrogels support the formation of 3D neuronal networks [J].
Broguiere, Nicolas ;
Isenmann, Luca ;
Zenobi-Wong, Marcy .
BIOMATERIALS, 2016, 99 :47-55
[2]   Human primary liver cancer-derived organoid cultures for disease modeling and drug screening [J].
Broutier, Laura ;
Mastrogiovanni, Gianmarco ;
Verstegen, Monique M. A. ;
Francies, Hayley E. ;
Gavarro, Lena Morrill ;
Bradshaw, Charles R. ;
Allen, George E. ;
Arnes-Benito, Robert ;
Sidorova, Olga ;
Gaspersz, Marcia P. ;
Georgakopoulos, Nikitas ;
Koo, Bon-Kyoung ;
Dietmann, Sabine ;
Davies, Susan E. ;
Praseedom, Raaj K. ;
Lieshout, Ruby ;
IJzermans, Jan N. M. ;
Wigmore, Stephen J. ;
Saeb-Parsy, Kourosh ;
Garnett, Mathew J. ;
van der Laan, Luc J. W. ;
Huch, Meritxell .
NATURE MEDICINE, 2017, 23 (12) :1424-+
[3]   Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation [J].
Broutier, Laura ;
Andersson-Rolf, Amanda ;
Hindley, Christopher J. ;
Boj, Sylvia F. ;
Clevers, Hans ;
Koo, Bon-Kyoung ;
Huch, Meritxell .
NATURE PROTOCOLS, 2016, 11 (09) :1724-1743
[4]   Modeling Development and Disease with Organoids [J].
Clevers, Hans .
CELL, 2016, 165 (07) :1586-1597
[5]   Synthetic hydrogels for human intestinal organoid generation and colonic wound repair [J].
Cruz-Acuna, Ricardo ;
Quiros, Miguel ;
Farkas, Attila E. ;
Dedhia, Priya H. ;
Huang, Sha ;
Siuda, Dorothee ;
Garcia-Hernandez, Vicky ;
Miller, Alyssa J. ;
Spence, Jason R. ;
Nusrat, Asma ;
Garcia, Andres J. .
NATURE CELL BIOLOGY, 2017, 19 (11) :1326-+
[6]   A functional CFTR assay using primary cystic fibrosis intestinal organoids [J].
Dekkers, Johanna F. ;
Wiegerinck, Caroline L. ;
de Jonge, Hugo R. ;
Bronsveld, Inez ;
Janssens, Hettie M. ;
de Winter-de Groot, Karin M. ;
Brandsma, Arianne M. ;
de Jong, Nienke W. M. ;
Bijvelds, Marcel J. C. ;
Scholte, Bob J. ;
Nieuwenhuis, Edward E. S. ;
van den Brink, Stieneke ;
Clevers, Hans ;
van der Ent, Cornelis K. ;
Middendorp, Sabine ;
Beekman, Jeffrey M. .
NATURE MEDICINE, 2013, 19 (07) :939-+
[7]   AMINO-ACID SEQUENCE OF THE ALPHA-CHAIN OF HUMAN-FIBRINOGEN [J].
DOOLITTLE, RF ;
WATT, KWK ;
COTTRELL, BA ;
STRONG, DD ;
RILEY, M .
NATURE, 1979, 280 (5722) :464-468
[8]   Enzymatic formation of modular cell-instructive fibrin analogs for tissue engineering [J].
Ehrbar, Martin ;
Rizzi, Simone C. ;
Hlushchuk, Ruslan ;
Djonov, Valentin ;
Zisch, Andreas H. ;
Hubbell, Jeffrey A. ;
Weber, Franz E. ;
Lutolf, Matthias P. .
BIOMATERIALS, 2007, 28 (26) :3856-3866
[9]   Self-Organized Formation of Polarized Cortical Tissues from ESCs and Its Active Manipulation by Extrinsic Signals [J].
Eiraku, Mototsugu ;
Watanabe, Kiichi ;
Matsuo-Takasaki, Marni ;
Kawada, Masako ;
Yonemura, Shigenobu ;
Matsumura, Michiru ;
Wataya, Takafumi ;
Nishiyama, Ayaka ;
Muguruma, Keiko ;
Sasail, Yoshiki .
CELL STEM CELL, 2008, 3 (05) :519-532
[10]  
Gjorevski N, 2016, NATURE, V539, P359, DOI 10.1038/nature20168