Printing parameters affect the electrochemical performance of 3D-printed carbon electrodes obtained by fused deposition modeling

被引:20
作者
Rocha, Raquel G. [1 ]
Ramos, David L. O. [1 ]
Faria, Lucas V. de [1 ]
Germscheidt, Rafael L. [2 ]
Santos, Diego P. dos [2 ]
Bonacin, Juliano A. [1 ,2 ]
Munoz, Rodrigo A. A. [1 ,3 ]
Richter, Eduardo M. [1 ,3 ]
机构
[1] Univ Fed Uberlandia, Inst Chem, BR-38400902 Uberlandia, MG, Brazil
[2] Univ Estadual Campinas, Inst Chem, BR-13083859 Campinas, Sao Paulo, Brazil
[3] Natl Inst Sci & Technol Bioanalyt INCT Bio, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Additive manufacturing; Sensors; 3D-printed electrodes; Conductive pathways; Fused filament fabrication; SINGLE-STEP FABRICATION; GRAPHENE ELECTRODES; SPECTRAL-ANALYSIS; DEVICE; CELLS;
D O I
10.1016/j.jelechem.2022.116910
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Thermoplastic filaments containing conductive carbon materials have contributed tremendously to innovations in the scientific scenario, however, the high charge transfer resistance of available materials sets a challenge for the development of 3D-printed electrochemical sensors. To solve this problem, several research groups have proposed chemical and physical post-treatments that are time-consuming and affect the structural integrity of materials. Herein, we systematically investigated the influence of printing parameters (orientation, layer thickness, number of perimeters and printing perimeter speed) on the electrochemical performance of sensors. For these studies, 3D-printed electrodes (rectangular shape) were printed using an affordable filament of car-bon black integrated in polylactic acid (CB/PLA), and measurements by cyclic voltammetry (CV), and electro-chemical impedance spectroscopy (EIS) using 10 mmol/L [Ru(NH3)6]2 +/-/3 +/- as redox probe were performed. The results showed that electrodes printed under vertical orientation, with lower layer thickness (0.05 mm) and print perimeter speed (30 mm s-1) using two perimeter numbers provided the best electrochemical per-formance (faradaic peak current intensity and lower peak-to-peak separation). To understand the improvement of electrochemical responses, experiments by Raman spectroscopy and multivariate curve resolution by alter-nating least squares (MCR-ALS) were carried out which showed greater availability and distribution of con-ducting sites under the selected conditions. Thus, it can be inferred that 3D-printing parameters are important features to allow the manufacture of improved carbon electrochemical platforms.
引用
收藏
页数:8
相关论文
共 46 条
[1]   Augmentation of conductive pathways in carbon black/PLA 3D-printed electrodes achieved through varying printing parameters [J].
Abdalla, A. ;
Hamzah, H. H. ;
Keattch, O. ;
Covill, D. ;
Patel, B. A. .
ELECTROCHIMICA ACTA, 2020, 354
[2]  
[Anonymous], Conductive pla protoplant, makers of proto-pasta
[3]   The effects of printing orientation on the electrochemical behaviour of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes [J].
Bin Hamzah, Hairul Hisham ;
Keattch, Oliver ;
Covill, Derek ;
Patel, Bhavik Anil .
SCIENTIFIC REPORTS, 2018, 8
[4]   3D Printed Graphene Electrodes' Electrochemical Activation [J].
Browne, Michelle P. ;
Novotny, Filip ;
Sofer, Zdenek ;
Pumera, Martin .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (46) :40294-40301
[5]  
C.B.P. Ram Benny Dessau R, 2008, R PROJECT STAT COMPU, P170
[6]   Additive-manufactured (3D-printed) electrochemical sensors: A critical review [J].
Cardoso, Rafael M. ;
Kalinke, Cristiane ;
Rocha, Raquel G. ;
dos Santos, Pamyla L. ;
Rocha, Diego P. ;
Oliveira, Paulo R. ;
Janegitz, Bruno C. ;
Bonacin, Juliano A. ;
Richter, Eduardo M. ;
Munoz, Rodrigo A. A. .
ANALYTICA CHIMICA ACTA, 2020, 1118 :73-91
[7]   3D-printed flexible device combining sampling and detection of explosives [J].
Cardoso, Rafael M. ;
Castro, Silvia V. F. ;
Silva, Murilo N. T. ;
Lima, Ana P. ;
Santana, Mario H. P. ;
Nossol, Edson ;
Silva, Rodrigo A. B. ;
Richter, Eduardo M. ;
Paixao, Thiago R. L. C. ;
Munoz, Rodrigo A. A. .
SENSORS AND ACTUATORS B-CHEMICAL, 2019, 292 :308-313
[8]   3D printing for electroanalysis: From multiuse electrochemical cells to sensors [J].
Cardoso, Rafael M. ;
Mendonca, Dianderson M. H. ;
Silva, Weberson P. ;
Silva, Murilo N. T. ;
Nossol, Edson ;
da Silva, Rodrigo A. B. ;
Richter, Eduardo M. ;
Munoz, Rodrigo A. A. .
ANALYTICA CHIMICA ACTA, 2018, 1033 :49-57
[9]   Electrochemical aptasensor for 17β-estradiol using disposable laser scribed graphene electrodes [J].
Chang, Zhu ;
Zhu, Bicheng ;
Liu, JinJin ;
Zhu, Xu ;
Xu, Maotian ;
Travas-Sejdic, Jadranka .
BIOSENSORS & BIOELECTRONICS, 2021, 185
[10]   Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems [J].
Daminabo, S. C. ;
Goel, S. ;
Grammatikos, S. A. ;
Nezhad, H. Y. ;
Thakur, V. K. .
MATERIALS TODAY CHEMISTRY, 2020, 16