Using multi-event hydrologic and hydraulic signatures from water level sensors to diagnose locations of uncertainty in integrated urban drainage models used in living digital twins

被引:6
作者
Pedersen, A. N. [1 ,2 ]
Pedersen, J. W. [2 ,3 ]
Borup, M. [2 ,4 ]
Brink-Kjaer, A. [1 ]
Christiansen, L. E. [5 ]
Mikkelsen, P. S. [2 ]
机构
[1] VCS Denmark, Vandvrksvej 7, DK-5000 Odense C, Denmark
[2] Tech Univ Denmark, DTU Environm, Bygningstorvet,Bygning 115, DK-2800 Lyngby, Denmark
[3] Danish Meteorol Inst, Lyngbyvej 100, DK-2100 Kbh O, Denmark
[4] Kruger AS, Veolia Water Technol, DK-2860 Soborg, Denmark
[5] Tech Univ Denmark, DTU Compute, Richard Petersens Plads,Bygning 324, DK-2800 Lyngby, Denmark
关键词
digital twins; error diagnosis; hydraulic models; rain uncertainty; time series; validation; CALIBRATION; SYSTEMS; GLUE;
D O I
10.2166/wst.2022.059
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Digital twins of urban drainage systems require simulation models that can adequately replicate the physical system. All models have their limitations, and it is important to investigate when and where simulation results are acceptable and to communicate the level of performance transparently to end-users. This paper first defines a classification of four possible 'locations of uncertainty' in integrated urban drainage models. It then develops a structured framework for identifying and diagnosing various types of errors. This framework compares model outputs with in-sewer water level observations based on hydrologic and hydraulic signatures. The approach is applied on a real case study in Odense, Denmark, with examples from three different system sites: a typical manhole, a small flushing chamber, and an internal overflow structure. This allows diagnosing different model errors ranging from issues in the underlying asset database and missing hydrologic processes to limitations in the model software implementation. Structured use of signatures is promising for continuous, iterative improvements of integrated urban drainage models. It also provides a transparent way to communicate the level of model adequacy to end-users.
引用
收藏
页码:1981 / 1998
页数:18
相关论文
共 41 条
  • [1] Arnbjerg-Nielsen K., 2006, SKRIFT NR, V28
  • [2] A Feature-Based Framework for Structuring Industrial Digital Twins
    Autiosalo, Juuso
    Vepsalainen, Jari
    Viitala, Raine
    Tammi, Kari
    [J]. IEEE ACCESS, 2020, 8 (08): : 1193 - 1208
  • [3] A critical review of integrated urban water modelling Urban drainage and beyond
    Bach, Peter M.
    Rauch, Wolfgang
    Mikkelsen, Peter S.
    McCarthy, David T.
    Deletic, Ana
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2014, 54 : 88 - 107
  • [4] Accounting for sensor calibration, data validation, measurement and sampling uncertainties in monitoring urban drainage systems
    Bertrand-Krajewski, JL
    Bardin, JP
    Mourad, M
    Béranger, Y
    [J]. WATER SCIENCE AND TECHNOLOGY, 2003, 47 (02) : 95 - 102
  • [5] Informal uncertainty analysis (GLUE) of continuous flow simulation in a hybrid sewer system with infiltration inflow - consistency of containment ratios in calibration and validation?
    Breinholt, A.
    Grum, M.
    Madsen, H.
    Thordarson, F. Orn
    Mikkelsen, P. S.
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2013, 17 (10) : 4159 - 4176
  • [6] Building and exploiting a Digital Twin for the management of drinking water distribution networks
    Conejos Fuertes, P.
    Martinez Alzamora, F.
    Hervas Carot, M.
    Alonso Campos, J. C.
    [J]. URBAN WATER JOURNAL, 2020, 17 (08) : 704 - 713
  • [7] Initial conditions of urban permeable surfaces in rainfall-runoff models using Horton's infiltration
    Davidsen, Steffen
    Lowe, Roland
    Ravn, Nanna H.
    Jensen, Lina N.
    Arnbjerg-Nielsen, Karsten
    [J]. WATER SCIENCE AND TECHNOLOGY, 2018, 77 (03) : 662 - 669
  • [8] Model bias and complexity - Understanding the effects of structural deficits and input errors on runoff predictions
    Del Giudice, D.
    Reichert, P.
    Bares, V.
    Albert, C.
    Rieckermann, J.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2015, 64 : 205 - 214
  • [9] Assessing uncertainties in urban drainage models
    Deletic, A.
    Dotto, C. B. S.
    McCarthy, D. T.
    Kleidorfer, M.
    Freni, G.
    Mannina, G.
    Uhl, M.
    Henrichs, M.
    Fletcher, T. D.
    Rauch, W.
    Bertrand-Krajewski, J. L.
    Tait, S.
    [J]. PHYSICS AND CHEMISTRY OF THE EARTH, 2012, 42-44 : 3 - 10
  • [10] DMI, 2020, DMI OP DAT