Phonon-interference resonance effects by nanoparticles embedded in a matrix

被引:25
作者
Feng, Lei [1 ]
Shiga, Takuma [1 ]
Han, Haoxue [2 ]
Ju, Shenghong [1 ]
Kosevich, Yuriy A. [3 ]
Shiomi, Junichiro [1 ,4 ]
机构
[1] Univ Tokyo, Dept Mech Engn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[2] St Gobain Res, Dept Thermomech & Modeling, 39 Quai Lucien Lefranc, F-93303 Aubervilliers, France
[3] Russian Acad Sci, Semenov Inst Chem Phys, Kosygin Str 4, Moscow 119991, Russia
[4] Natl Inst Mat Sci, Ctr Mat Res Informat Integrat, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
LOW THERMAL-CONDUCTIVITY; GREENS-FUNCTION METHOD; THERMOELECTRIC-MATERIALS; BULK THERMOELECTRICS; SIMULATION; TRANSPORT; DYNAMICS;
D O I
10.1103/PhysRevB.96.220301
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report an unambiguous phonon resonance effect originating from germanium nanoparticles embedded in silicon matrix. Our approach features the combination of the phonon wave-packet method with atomistic dynamics and the finite element method rooted in continuum theory. We find that multimodal phonon resonance, caused by destructive interference of coherent lattice waves propagating through and around the nanoparticle, gives rise to sharp and significant transmittance dips, blocking the lower-end frequency range of phonon transport that is hardly diminished by other nanostructures. The resonance is sensitive to the phonon coherent length, where the finiteness of the wave-packet width weakens the transmittance dip even when coherent length is longer than the particle diameter. Further strengthening of transmittance dips is possible by arraying multiple nanoparticles, which gives rise to the collective vibrational mode. Finally, it is demonstrated that these resonance effects can significantly reduce thermal conductance in the lower-end frequency range.
引用
收藏
页数:5
相关论文
共 31 条
[1]   Scaling laws of cumulative thermal conductivity for short and long phonon mean free paths [J].
Aketo, Daisuke ;
Shiga, Takuma ;
Shiomi, Junichiro .
APPLIED PHYSICS LETTERS, 2014, 105 (13)
[2]   Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature [J].
Alaie, Seyedhamidreza ;
Goettler, Drew F. ;
Su, Mehmet ;
Leseman, Zayd C. ;
Reinke, Charles M. ;
El-Kady, Ihab .
NATURE COMMUNICATIONS, 2015, 6
[3]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[4]   Intrinsic lattice thermal conductivity of semiconductors from first principles [J].
Broido, D. A. ;
Malorny, M. ;
Birner, G. ;
Mingo, Natalio ;
Stewart, D. A. .
APPLIED PHYSICS LETTERS, 2007, 91 (23)
[5]   Acoustic modes in metallic nanoparticles: Atomistic versus elasticity modeling [J].
Combe, Nicolas ;
Saviot, Lucien .
PHYSICAL REVIEW B, 2009, 80 (03)
[6]   Nanophononic Metamaterial: Thermal Conductivity Reduction by Local Resonance [J].
Davis, Bruce L. ;
Hussein, Mahmoud I. .
PHYSICAL REVIEW LETTERS, 2014, 112 (05)
[7]   The General Utility Lattice Program (GULP) [J].
Gale, JD ;
Rohl, AL .
MOLECULAR SIMULATION, 2003, 29 (05) :291-341
[8]  
Goldsmid H.J., 2016, Introduction to thermoelectricity
[9]   Phonon interference and thermal conductance reduction in atomic-scale metamaterials [J].
Han, Haoxue ;
Potyomina, Lyudmila G. ;
Darinskii, Alexandre A. ;
Volz, Sebastian ;
Kosevich, Yuriy A. .
PHYSICAL REVIEW B, 2014, 89 (18)
[10]   Thermal transport size effects in silicon membranes featuring nanopillars as local resonators [J].
Honarvar, Hossein ;
Yang, Lina ;
Hussein, Mahmoud I. .
APPLIED PHYSICS LETTERS, 2016, 108 (26)