Low-resistivity α-phase tungsten films grown by hot-wire assisted atomic layer deposition in high-aspect-ratio structures

被引:17
作者
Yang, Mengdi [1 ]
Aarnink, Antonius A. I. [1 ]
Schmitz, Jurriaan [1 ]
Kovalgin, Alexey Y. [1 ]
机构
[1] Univ Twente, MESA Inst Nanotechnol, POB 217, NL-7500 AE Enschede, Netherlands
关键词
Hot wire; Tungsten; ALD; Alpha-phase; Low resistivity; High-aspect-ratio substrates; BETA-TUNGSTEN; THIN-FILMS; HYDROGEN; ALD; DISSOCIATION; TRANSFORMATION; TEMPERATURE; NUCLEATION; SILICON; SYSTEM;
D O I
10.1016/j.tsf.2017.12.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, the so-called hot-wire (HW) assisted atomic layer deposition (HWALD) technique is employed to grow high-purity a-phase tungsten (W) films at a substrate temperature of 275 degrees C. The films are deposited on thermally grown silicon dioxide (SiO2) in a home-built hot-wall reactor, using alternating pulses of WF6 and HW-generated atomic hydrogen in the self-limiting surface-reaction manner characteristic for ALD. A W seed layer, needed to enable the HWALD-W process on a SiO2 surface, is formed prior to each deposition. In-situ spectroscopic ellipsometry is used to monitor the growth behavior and film properties. The films exhibit a high-purity (99 at.%) W, according to X-ray photoelectron spectroscopy. The X-ray diffraction scans reveal the existence of a-phase W. The resistivity measurements by means of four point probe, transfer length method test structures and the Drude-Lorentz SE model all reveal a low resistivity of 15 mu Omega.cm. The high-resolution transmission electron microscopy analysis shows a uniform and conformal coverage of high aspect ratio structures, confirming the effective ALD process and the sufficient diffusion of both WF6 and at-H into deep trenches.
引用
收藏
页码:199 / 208
页数:10
相关论文
共 48 条
[1]   DEGRADATION OF THE THERMAL OXIDE OF THE SI/SIO2AL SYSTEM DUE TO VACUUM-ULTRAVIOLET IRRADIATION [J].
AFANAS'EV, VV ;
DENIJS, JMM ;
BALK, P ;
STESMANS, A .
JOURNAL OF APPLIED PHYSICS, 1995, 78 (11) :6481-6490
[2]   Non-ohmic transport behavior in ultra-thin gold films [J].
Alkhatib, A. ;
Souier, T. ;
Chiesa, M. .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2011, 176 (11) :840-845
[3]  
Allen F., 1995, International Tables for Crystallography, VC.
[4]  
Bartl A., 1997, THESIS
[5]   SUPERCONDUCTIVITY IN BETA-TUNGSTEN FILMS [J].
BASAVAIAH, S ;
POLLACK, SR .
JOURNAL OF APPLIED PHYSICS, 1968, 39 (12) :5548-+
[6]   DIRECT-CURRENT-MAGNETRON DEPOSITION OF MOLYBDENUM AND TUNGSTEN WITH RF-SUBSTRATE BIAS [J].
BENSAOULA, A ;
WOLFE, JC ;
IGNATIEV, A ;
FONG, FO ;
LEUNG, TS .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1984, 2 (02) :389-392
[7]   Atomic layer deposition of W1.5N barrier films for Cu metallization [J].
Bystrova, S ;
Aarnink, AAI ;
Holleman, J ;
Wolters, RAM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (07) :G522-G527
[8]   Kinetics of the WF6 and Si2H6 surface reactions during tungsten atomic layer deposition [J].
Elam, JW ;
Nelson, CE ;
Grubbs, RK ;
George, SM .
SURFACE SCIENCE, 2001, 479 (1-3) :121-135
[9]   Nucleation and growth during tungsten atomic layer deposition on SiO2 surfaces [J].
Elam, JW ;
Nelson, CE ;
Grubbs, RK ;
George, SM .
THIN SOLID FILMS, 2001, 386 (01) :41-52
[10]   Atomic Layer Deposition: An Overview [J].
George, Steven M. .
CHEMICAL REVIEWS, 2010, 110 (01) :111-131