Wellposedness and zero microrotation viscosity limit of the 2D micropolar fluid equations

被引:65
作者
Xue, Liutang [1 ]
机构
[1] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
关键词
micropolar fluid; vanishing viscosity limit; global wellposedness; EXISTENCE; SYSTEM;
D O I
10.1002/mma.1491
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the 2D micropolar fluid equations in the whole space R-2. We prove the global wellposedness of the system with rough initial data and show the vanishing microrotation viscosity limit in the case of zero kinematic viscosity or zero angular viscosity. Copyright (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:1760 / 1777
页数:18
相关论文
共 21 条
[1]   On the global well-posedness for Boussinesq system [J].
Abidi, H. ;
Hmidi, T. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 233 (01) :199-220
[2]  
[Anonymous], 1984, APPL MATH SCI
[3]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[4]  
Chemin J. -Y., 1998, Perfect Incompressible Fluids
[5]  
CHEN Q, ARXIVMATHAP10080219
[6]   A maximum principle applied to quasi-geostrophic equations [J].
Córdoba, A ;
Córdoba, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 249 (03) :511-528
[7]   Uniform estimates for transport-diffusion equations [J].
Danchin, R. .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2007, 4 (01) :1-17
[8]  
Danchin R, 2005, REV MAT IBEROAM, V21, P863
[9]   Global regularity of the 2D micro polar fluid flows with zero angular viscosity [J].
Dong, Bo-Qing ;
Zhang, Zhifei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (01) :200-213
[10]  
ERINGEN AC, 1966, J MATH MECH, V16, P1