Gradient flows of the entropy for finite Markov chains

被引:201
作者
Maas, Jan [1 ]
机构
[1] Univ Bonn, Inst Appl Math, D-53115 Bonn, Germany
关键词
Markov chains; Entropy; Gradient flows; Wasserstein metric; Optimal transportation; METRIC-MEASURE-SPACES; RICCI CURVATURE; HEAT-FLOW; EQUATIONS; EXISTENCE; GEOMETRY;
D O I
10.1016/j.jfa.2011.06.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be an irreducible and reversible Markov kernel on a finite set X. We construct a metric W on the set of probability measures on X and show that with respect to this metric, the law of the continuous time Markov chain evolves as the gradient flow of the entropy. This result is a discrete counterpart of the Wasserstein gradient flow interpretation of the heat flow in R-n by Jordan, Kinderlehrer and Otto (1998). The metric W is similar to, but different from, the L-2-Wasserstein metric, and is defined via a discrete variant of the Benamou-Brenier formula. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2250 / 2292
页数:43
相关论文
共 28 条
[1]  
Ambrosio L., 2006, Gradient Flows in Metric Spaces and in the Space of Probability Measures
[2]   Existence and stability for Fokker-Planck equations with log-concave reference measure [J].
Ambrosio, Luigi ;
Savare, Giuseppe ;
Zambotti, Lorenzo .
PROBABILITY THEORY AND RELATED FIELDS, 2009, 145 (3-4) :517-564
[3]  
[Anonymous], 2003, TOPICS OPTIMAL TRANS
[4]  
Benamou JD, 2000, NUMER MATH, V84, P375, DOI 10.1007/s002119900117
[5]  
Bhatia R, 2007, PRINC SER APPL MATH, P1
[6]   Mass transportation and rough curvature bounds for discrete spaces [J].
Bonciocat, Anca-Iuliana ;
Sturm, Karl-Theodor .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (09) :2944-2966
[7]   Nonlinear mobility continuity equations and generalized displacement convexity [J].
Carrillo, J. A. ;
Lisini, S. ;
Savare, G. ;
Slepcev, D. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (04) :1273-1309
[8]  
CHOW SN, FOKKERPLANCK EQUATIO
[9]   A note on diagonally dominant matrices [J].
Dahl, G .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 317 (1-3) :217-224
[10]   A new class of transport distances between measures [J].
Dolbeault, Jean ;
Nazaret, Bruno ;
Savare, Giuseppe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (02) :193-231