DUALITY FOR BOREL MEASURABLE COST FUNCTIONS

被引:24
作者
Beiglboeck, Mathias [1 ]
Schachermayer, Walter [1 ]
机构
[1] Univ Vienna, Fak Math, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Monge-Kantorovich problem; Monge-Kantorovich duality; c-cyclical monotonicity; measurable cost function; THEOREM;
D O I
10.1090/S0002-9947-2011-05174-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Monge-Kantorovich transport problem in an abstract measure theoretic setting. Our main result states that duality holds if c : X x Y -> [0, infinity) is an arbitrary Borel measurable cost function on the product of Polish spaces X, Y. In the course of the proof we show how to relate a non-optimal transport plan to the optimal transport costs via a "subsidy" function and how to identify the dual optimizer. We also provide some examples showing the limitations of the duality relations.
引用
收藏
页码:4203 / 4224
页数:22
相关论文
共 20 条
[1]  
Ambrosio L, 2003, LECT NOTES MATH, V1813, P123
[2]  
[Anonymous], 1998, PROB APPL S, DOI 10.1007/b98894
[3]  
BEIGLBOCK M, 2008, ARXIV08020646V1
[4]   DECOMPOSITION OF MULTIVARIATE FUNCTIONS [J].
BORWEIN, JM ;
LEWIS, AS .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1992, 44 (03) :463-482
[5]   A GENERAL VERSION OF THE FUNDAMENTAL THEOREM OF ASSET PRICING [J].
DELBAEN, F ;
SCHACHERMAYER, W .
MATHEMATISCHE ANNALEN, 1994, 300 (03) :463-520
[6]   The geometry of optimal transportation [J].
Gangbo, W ;
McCann, RJ .
ACTA MATHEMATICA, 1996, 177 (02) :113-161
[7]  
Kechris A. S., 1995, CLASSICAL DESCRIPTIV, V156
[8]  
Kellerer Hans G, 1985, P 7 C PROBABILITY TH, P211, DOI DOI 10.1515/9783112314036-025
[9]   DUALITY THEOREMS FOR MARGINAL PROBLEMS [J].
KELLERER, HG .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 67 (04) :399-432
[10]   A GENERALIZATION OF A PROBLEM OF STEINHAUS [J].
KOMLOS, J .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1967, 18 (1-2) :217-&