共 50 条
The scaled boundary finite-element method - A primer: Derivations
被引:0
|作者:
Wolf, JP
[1
]
Song, C
[1
]
机构:
[1] ETH Zurich, Dept Civil Engn, Inst Hydraul & Energy, CH-1015 Lausanne, Switzerland
来源:
ADVANCES IN COMPUTATIONAL STRUCTURAL MECHANICS
|
1998年
关键词:
boundary element;
dynamics;
finite element;
radiation condition;
soil-structure interaction;
wave motion;
D O I:
暂无
中图分类号:
TU [建筑科学];
学科分类号:
0813 ;
摘要:
The scaled boundary finite-element method is a semianalytical fundamental-solution-less boundary-element method based solely on finite elements. Using the simplest wave propagation problem and discretizing the boundary with a two-node line finite element, which preserves all essential features, two derivations of the scaled boundary finite-element equations in displacement and dynamic stiffness are presented. In the first, the scaled-boundary-transformation-based derivation, the new local coordinate system consists of the distance measured from the so-called scaling centre and the circumferential directions defined on the surface finite element. The governing partial differential equations are transformed to ordinary differential equations by applying the weighted-residual technique. The boundary conditions are conveniently formulated in the local coordinates. In the second, the mechanically-based derivation, a similar fictitious boundary is introduced. A finite-element cell is constructed between the two boundaries. Standard finite-element assemblage and similarity lead to the scaled boundary finite-element equations after performing the limit of the cell width towards zero analytically.
引用
收藏
页码:29 / 46
页数:18
相关论文