Viscous shocks in the destabilized Kuramoto-Sivashinsky equation

被引:26
作者
Rademacher, Jens D. M. [1 ]
Wittenberg, Ralf W. [2 ]
机构
[1] Weierstrass Inst Appl Anal & Slochast, D-10117 Berlin, Germany
[2] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
来源
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS | 2006年 / 1卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1115/1.2338656
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We study stationary periodic solutions of the Kuramoto-Sivashinsky (KS) model for complex spatio-temporal dynamics in the presence of an additional linear destabilizing term. In particular, we show the phase space origins of the previously observed stationary "viscous shocks" and related solutions. These arise ill a reversible four-dimensional dynamical system as perturbed heteroclinic connections whose tails are joined through a reinjection mechanism due to the linear term. We present numerical evidence that the transition to the KS limit contains a rich bifurcation structure even within the class of stationary reversible solutions.
引用
收藏
页码:336 / 347
页数:12
相关论文
共 26 条
[1]   Beyond-all-orders effects in multiple-scales asymptotics: travelling-wave solutions to the Kuramoto-Sivashinsky equation [J].
Adams, KL ;
King, JR ;
Tew, RH .
JOURNAL OF ENGINEERING MATHEMATICS, 2003, 45 (3-4) :197-226
[2]  
BRONSKI JC, 2005, ARXIVMATHAP0508481
[3]   TRANSITION TO TURBULENCE VIA SPATIOTEMPORAL INTERMITTENCY [J].
CHATE, H ;
MANNEVILLE, P .
PHYSICAL REVIEW LETTERS, 1987, 58 (02) :112-115
[4]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[5]   REVERSIBLE DIFFEOMORPHISMS AND FLOWS [J].
DEVANEY, RL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 218 (APR) :89-113
[6]  
DOEDEL E, 2002, AUTO2000 CONTINUTATI
[7]  
Doelman A, 2005, DYNAMICS MODULATED W
[8]   Stability of cellular states of the Kuramoto-Sivashinsky equation [J].
Elgin, JN ;
Wu, XS .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (06) :1621-1638
[10]   New bounds for the Kuramoto-Sivashinsky equation [J].
Giacomelli, L ;
Otto, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (03) :297-318