In Silico Discovery of Covalent Organic Frameworks for Carbon Capture

被引:52
作者
Deeg, Kathryn S. [1 ,3 ]
Borges, Daiane Damasceno [3 ,4 ]
Ongari, Daniele [3 ]
Rampal, Nakul [2 ,5 ]
Talirz, Leopold [3 ,6 ]
Yakutovich, Aliaksandr, V [3 ,6 ]
Huck, Johanna M. [2 ,3 ]
Smit, Berend [1 ,2 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[3] Ecole Polytech Fed Lausanne EPFL, Lab Mol Simulat LSMO, Inst Sci & Ingn Chim ISIC, CH-1951 Sion, Switzerland
[4] Univ Fed Uberlandia, Inst Fis, BR-38408100 Uberlandia, MG, Brazil
[5] Univ Cambridge, Dept Chem Engn & Biotechnol, Adsorpt & Adv Mat Lab AAML, Cambridge CB3 0AS, England
[6] Ecole Polytech Fed Lausanne EPFL, Fac Sci & Tech Ingenieur, Theory & Simulat Mat THEOS, CH-1015 Lausanne, Switzerland
基金
巴西圣保罗研究基金会; 瑞士国家科学基金会; 欧洲研究理事会; 美国国家科学基金会;
关键词
carbon capture; covalent organic frameworks; parasitic energy; gas separation; molecular simulation; charge equilibration method; genetic algorithm; DIOXIDE CAPTURE; CHARGE EQUILIBRATION; CO2; CAPTURE; STORAGE; ADSORPTION; GAS; ALGORITHMS; DATABASE; METHANE;
D O I
10.1021/acsami.0c01659
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We screen a database of more than 69 000 hypothetical covalent organic frameworks (COFs) for carbon capture using parasitic energy as a metric. To compute CO2-framework interactions in molecular simulations, we develop a genetic algorithm to tune the charge equilibration method and derive accurate framework partial charges. Nearly 400 COFs are identified with parasitic energy lower than that of an amine scrubbing process using monoethanolamine; more than 70 are better performers than the best experimental COFs and several perform similarly to Mg-MOF-74. We analyze the effect of pore topology on carbon capture performance to guide the development of improved carbon capture materials.
引用
收藏
页码:21559 / 21568
页数:10
相关论文
共 49 条
[1]   Molecular screening of metal-organic frameworks for CO2 storage [J].
Babarao, Ravichandar ;
Jiang, Jianwen .
LANGMUIR, 2008, 24 (12) :6270-6278
[2]   Exceptionally high CO2 storage in covalent-organic frameworks: Atomistic simulation study [J].
Babarao, Ravichandar ;
Jiang, Jianwen .
ENERGY & ENVIRONMENTAL SCIENCE, 2008, 1 (01) :139-143
[3]  
Bui M, 2018, ENERG ENVIRON SCI, V11, P1062, DOI [10.1039/C7EE02342A, 10.1039/c7ee02342a]
[4]   Electrostatic Potential Derived Atomic Charges for Periodic Systems Using a Modified Error Functional [J].
Campana, Carlos ;
Mussard, Bastien ;
Woo, Tom K. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2009, 5 (10) :2866-2878
[5]   Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources [J].
Choi, Sunho ;
Drese, Jeffrey H. ;
Jones, Christopher W. .
CHEMSUSCHEM, 2009, 2 (09) :796-854
[6]   Covalent organic frameworks for extremely high reversible CO2 uptake capacity: a theoretical approach [J].
Choi, Yoon Jeong ;
Choi, Jung Hoon ;
Choi, Kyung Min ;
Kang, Jeung Ku .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (04) :1073-1078
[7]   Carbon Dioxide Capture: Prospects for New Materials [J].
D'Alessandro, Deanna M. ;
Smit, Berend ;
Long, Jeffrey R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (35) :6058-6082
[8]  
Deeg K. S., 2019, THESIS
[9]  
Deeg K. S., 2020, MAT CLOUD ARCH, DOI [10.24435/materialscloud:2020.0029/v1., DOI 10.24435/MATERIALSCLOUD:2020.0029/V1]
[10]   RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials [J].
Dubbeldam, David ;
Calero, Sofia ;
Ellis, Donald E. ;
Snurr, Randall Q. .
MOLECULAR SIMULATION, 2016, 42 (02) :81-101