Towards sub-10 nm resolution zone plates using the overlay nanofabrication processes

被引:5
|
作者
Chao, Weilun [1 ]
Anderson, Erik H. [1 ]
Fischer, Peter [1 ]
Kim, Dong-Hyun [2 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, 1 Cyclotron Rd,MS 2-400, Berkeley, CA 94720 USA
[2] Chungbuk Natl Univ, Dept Phys, Cheongju 361763, Chungbuk, South Korea
来源
ADVANCED FABRICATION TECHNOLOGIES FOR MICRO/NANO OPTICS AND PHOTONICS | 2008年 / 6883卷
关键词
zone plates; spatial resolution; x-ray microscopy; electron beam lithography; overlay fabrication technique;
D O I
10.1117/12.768878
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Soft x-ray zone plate microscopy has proven to be a valuable imaging technique for nanoscale studies. It complements nano-analytic techniques such as electron and scanning probe microscopies. One of its key features is high spatial resolution. We developed an overlay nanofabrication process which allows zone plates of sub-20 nm zone widths to be fabricated. Zone plates of 15 nm outer zones were successfully realized using this process, and sub-15 nm resolution was achieved with these zone plates. We extend the overlay process to fabricating zone plates of 12 nm outer zones, which is expected to achieve 10 nm resolution. In addition, we have identified a pathway to realizing sub-10 nm resolution, high efficiency zone plates with tilted zones using the overlay process.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Focus on sub-10 nm nanofabrication
    Perego, Michele
    NANOTECHNOLOGY, 2018, 29 (26)
  • [2] Nanofabrication toward sub-10 nm and its application to novel nanodevices
    Sone, J
    Fujita, J
    Ochiai, Y
    Manako, S
    Matsui, S
    Nomura, E
    Baba, T
    Kawaura, H
    Sakamoto, T
    Chen, CD
    Nakamura, Y
    Tsai, JS
    NANOTECHNOLOGY, 1999, 10 (02) : 135 - 141
  • [3] Sub-10 nm Nanofabrication With The Helium And Neon Ions In ORION NanoFab
    Singh, Bipin
    APPLICATION OF ACCELERATORS IN RESEARCH AND INDUSTRY, 2013, 1525 : 392 - 399
  • [4] Nanofabrication toward sub-10 nm and its application to novel nanodevices
    Sone, J.
    Fujita, J.
    Ochiai, Y.
    Manako, S.
    Matsui, S.
    Nomura, E.
    Baba, T.
    Kawaura, H.
    Sakamoto, T.
    Chen, C.D.
    Nakamura, Y.
    Tsai, J.S.
    Nanotechnology, 10 (02): : 135 - 141
  • [5] Deterministic Deposition of Nanoparticles with Sub-10 nm Resolution
    Fringes, Stefan
    Schwemmer, C.
    Rawlings, Colin D.
    Knoll, Armin W.
    NANO LETTERS, 2019, 19 (12) : 8855 - 8861
  • [6] Directed Self-Assembly of Triblock Copolymers for Sub-10 nm Nanofabrication Using Polymeric Additives
    Li, Jiajing
    Zhou, Chun
    Chen, Xuanxuan
    Rincon-Delgadillo, Paulina
    Nealey, Paul
    ADVANCES IN PATTERNING MATERIALS AND PROCESSES XXXV, 2018, 10586
  • [7] Sub-10 nm porous alumina templates to produce sub-10 nm nanowires
    Resende, Pedro M.
    Martin-Gonzalez, Marisol
    MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 284 (198-204) : 198 - 204
  • [8] Sub-10 nm silicon ridge nanofabrication by advanced edge lithography for NIL applications
    Zhao, Yiping
    Berenschot, Erwin
    Jansen, Henri
    Tas, Niels
    Huskens, Jurriaan
    Elwenspoek, Miko
    MICROELECTRONIC ENGINEERING, 2009, 86 (4-6) : 832 - 835
  • [9] Helium ion microscopy for low-damage characterization and sub-10 nm nanofabrication
    Ogawa, Shinichi
    AAPPS BULLETIN, 2022, 32 (01):
  • [10] Mapping stress in polycrystals with sub-10 nm spatial resolution
    Polop, C.
    Vasco, E.
    Perrino, A. P.
    Garcia, R.
    NANOSCALE, 2017, 9 (37) : 13938 - 13946