PRIOR SEMANTIC HARMONIZATION NETWORK FOR FEW-SHOT SEMANTIC SEGMENTATION

被引:2
作者
Yang, Xinhao [1 ,2 ]
Ma, Liyan [1 ,2 ]
Zhou, Yang [2 ]
Peng, Yan [2 ]
Xie, Shaorong [1 ,2 ]
机构
[1] Shanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R China
[2] Shanghai Univ, Sch Artificial Intellegence, Shanghai, Peoples R China
来源
2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2022年
基金
国家重点研发计划;
关键词
Few-shot segmentation; Semantic harmonization; Feature activation; Hierarchical aggregation;
D O I
10.1109/ICIP46576.2022.9897329
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot semantic segmentation(FSS) is intended to segment a foreground object from a query image with a novel object using only a few annotated support images. Although attracting the attention of many researchers, this challenging problem remains to be not well solved due to two critical issues: (1)The information mismatching between support and query features leads to model distraction. (2)The key feature of query images is not activated well. In this paper, we introduce the Prior Semantic Harmonization Network(PSHNet) to tackle these limitations. PSHNet is composed of three effective modules. The Semantic Harmonization Module(SHM) corrects the information matching between support and query images, while the Feature Activation Module(FAM) activates the key feature of query images. Furthermore, we introduce a Hierarchical Aggregation Module(HAM) to refine each output of the multi-scale module. Experiments show that our model achieves an excellent performance on both PASCAL-5i and COCO-20i datasets.
引用
收藏
页码:1126 / 1130
页数:5
相关论文
共 21 条
[1]  
[Anonymous], 2020, EUR C COMP VIS, DOI DOI 10.1109/ECCE44975.2020.9236387
[2]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[3]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[4]   Res2Net: A New Multi-Scale Backbone Architecture [J].
Gao, Shang-Hua ;
Cheng, Ming-Ming ;
Zhao, Kai ;
Zhang, Xin-Yu ;
Yang, Ming-Hsuan ;
Torr, Philip .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (02) :652-662
[5]  
Ke ZX, 2021, 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), P4746
[6]   Feature Weighting and Boosting for Few-Shot Segmentation [J].
Khoi Nguyen ;
Todorovic, Sinisa .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :622-631
[7]   RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation [J].
Lin, Guosheng ;
Milan, Anton ;
Shen, Chunhua ;
Reid, Ian .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5168-5177
[8]   Microsoft COCO: Common Objects in Context [J].
Lin, Tsung-Yi ;
Maire, Michael ;
Belongie, Serge ;
Hays, James ;
Perona, Pietro ;
Ramanan, Deva ;
Dollar, Piotr ;
Zitnick, C. Lawrence .
COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 :740-755
[9]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
[10]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241