Computation of invariants for reductive groups

被引:37
作者
Derksen, H [1 ]
机构
[1] Northeastern Univ, Dept Math, Boston, MA 02155 USA
关键词
D O I
10.1006/aima.1998.1787
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We will give an algorithm for computing generators of the invariant ring for a given representation of a linearly reductive group. The algorithm basically consists of a single Grobner basis computation. We will also show a connection between some open conjectures in commutative algebra and finding good degree bounds for generating invariants. (C) 1999 Academic Press.
引用
收藏
页码:366 / 384
页数:19
相关论文
共 44 条
[11]  
Gatermann K, 1996, APPL ALGEBR ENG COMM, V7, P105, DOI 10.1007/s002000050022
[12]   COMPUTING BASES FOR RINGS OF PERMUTATION-INVARIANT POLYNOMIALS [J].
GOBEL, M .
JOURNAL OF SYMBOLIC COMPUTATION, 1995, 19 (04) :285-291
[13]  
Gordan P., 1868, J. Reine Angew. Math, V69, P323
[14]  
HEYDTMANN AE, 1996, THESIS SAARBRUCKEN
[15]  
HILBERT D, 1970, GESAMMELTE ABH, V3, P290
[16]  
Hilbert D, 1901, ARCH MATH PHYS, V1, P213
[17]  
Hilbert D., 1893, Math. Ann., V42, P313, DOI [DOI 10.1007/BF01444162, 10.1007/BF01444162]
[18]  
Hilbert D., 1901, Archiv f. Math. u. Phys. 3. Reihe, VI, P213
[19]  
Hilbert David, 1890, MATH ANN, V36, P473
[20]  
HISS K, 1997, THESIS BRANDEIS U