Quantile-Based Empirical Mode Decomposition: An Efficient Way to Decompose Noisy Signals

被引:26
作者
Park, Minsu [1 ]
Kim, Donghoh [2 ]
Oh, Hee-Seok [1 ]
机构
[1] Seoul Natl Univ, Dept Stat, Seoul 151747, South Korea
[2] Sejong Univ, Dept Appl Math, Seoul 143747, South Korea
基金
新加坡国家研究基金会;
关键词
Empirical mode decomposition (EMD); intrinsic mode functions (IMFs); mean envelope; noisy signals; outliers; quantile smoothing; TIME-SERIES ANALYSIS; SPATIAL ADAPTATION; SMOOTHING SPLINES; HILBERT SPECTRUM; EMD; ALGORITHM; IMPROVEMENT; REGRESSION; BANDWIDTH;
D O I
10.1109/TIM.2014.2381355
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The main goal of this paper is to propose a new approach of empirical mode decomposition (EMD) that analyzes noisy signals efficiently. The EMD has been widely used to decompose nonlinear and nonstationary signals into some components according to intrinsic frequency called intrinsic mode functions. However, the conventional EMD may not be efficient in decomposing signals that are contaminated by noninformative noises or outliers. This paper presents a new EMD procedure that analyzes noisy signals effectively and is robust to outliers with holding the merits of the conventional EMD. The key ingredient of the proposed method is to apply a quantile smoothing method to a noisy signal itself instead of interpolating local extrema of the signal when constructing its mean envelope. Through simulation studies and texture image analysis, it is demonstrated that the proposed method produces substantially effective results.
引用
收藏
页码:1802 / 1813
页数:12
相关论文
共 40 条
[1]   Analysis of Sunspot Variability Using the Hilbert - Huang Transform [J].
Barnhart, Bradley L. ;
Eichinger, William E. .
SOLAR PHYSICS, 2011, 269 (02) :439-449
[2]   EMD-Based signal filtering [J].
Boudraa, Abdel-Ouahab ;
Cexus, Jean-Christophe .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2007, 56 (06) :2196-2202
[3]   ASYMPTOTICS FOR M-TYPE SMOOTHING SPLINES [J].
COX, DD .
ANNALS OF STATISTICS, 1983, 11 (02) :530-551
[4]   A fast algorithm for bidimensional EMD [J].
Damerval, C ;
Meignen, S ;
Perrier, V .
IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (10) :701-704
[5]   Analysis of Intrinsic Mode Functions: A PDE Approach [J].
Diop, El Hadji S. ;
Alexandre, R. ;
Boudraa, A. O. .
IEEE SIGNAL PROCESSING LETTERS, 2010, 17 (04) :398-401
[6]   IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE [J].
DONOHO, DL ;
JOHNSTONE, IM .
BIOMETRIKA, 1994, 81 (03) :425-455
[7]  
FAN JQ, 1995, J ROY STAT SOC B, V57, P371
[8]   Internal Leakage Detection in Hydraulic Actuators Using Empirical Mode Decomposition and Hilbert Spectrum [J].
Goharrizi, Amin Yazdanpanah ;
Sepehri, Nariman .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2012, 61 (02) :368-378
[9]  
Hastie T., 2009, ELEMENTS STAT LEARNI, DOI 10.1007/978-0-387-84858-7
[10]   Some Properties of an Empirical Mode Type Signal Decomposition Algorithm [J].
Hawley, Stephen D. ;
Atlas, Les E. ;
Chizeck, Howard J. .
IEEE SIGNAL PROCESSING LETTERS, 2010, 17 (01) :24-27