Using Spike-Based Bio-Inspired Olfactory Model for Data Processing in Electronic Noses

被引:12
作者
Liu, Ying-Jie [1 ]
Meng, Qing-Hao [1 ]
Qi, Pei-Feng [1 ]
Sun, Biao [1 ]
Zhu, Xin-Shan [1 ]
机构
[1] Tianjin Univ, Inst Robot & Autonomous Syst, Tianjin Key Lab Proc Measurement & Control, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Bio-inspired olfactory model; spike encoding; olfactory bulb; electronic nose; data processing; SENSOR; INFORMATION; FRAMEWORK; PATTERNS; NETWORK;
D O I
10.1109/JSEN.2017.2774438
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Conventional electronic noses need complicated data preprocessing and tedious feature reduction steps for different sensors and applications. To overcome the drawbacks, a bio-inspired data processing method using a spike-based olfactory model is proposed in this paper, which consists of spike encoding by virtual olfactory receptor neurons (VORNs) and subsequent processing in a bionic olfactory bulb (BOB) model. Each VORN transduces the continuous sensor responses into spike time points, which are relayed to the BOB to enhance the operation efficiency. It is easy to extract useful features from BOB's outputs due to their specific oscillation patterns, which simplifies the subsequent steps of feature generation. Three classification methods are used to identify seven Chinese liquors. The experimental results show that the proposed method achieves a better classification performance than the conventional methods.
引用
收藏
页码:692 / 702
页数:11
相关论文
共 42 条
[1]  
Al-Allaf Omaima N. A., 2010, Journal of Computer Sciences, V6, P1347, DOI 10.3844/jcssp.2010.1347.1354
[2]  
[Anonymous], IEEE SENSORS J
[3]   Design of a very large chemical sensor system for mimicking biological olfaction [J].
Beccherelli, R. ;
Zampetti, E. ;
Pantalei, S. ;
Bernabei, M. ;
Persaud, K. C. .
SENSORS AND ACTUATORS B-CHEMICAL, 2010, 146 (02) :446-452
[4]   Local smoothing regression with functional data [J].
Benhenni, K. ;
Ferraty, F. ;
Rachdi, M. ;
Vieu, P. .
COMPUTATIONAL STATISTICS, 2007, 22 (03) :353-369
[5]   Error-backpropagation in temporally encoded networks of spiking neurons [J].
Bohte, SM ;
Kok, JN ;
La Poutré, H .
NEUROCOMPUTING, 2002, 48 :17-37
[6]   Support Vector Machines for classification and regression [J].
Brereton, Richard G. ;
Lloyd, Gavin R. .
ANALYST, 2010, 135 (02) :230-267
[7]   A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input [J].
Burkitt, A. N. .
BIOLOGICAL CYBERNETICS, 2006, 95 (01) :1-19
[8]   Spike Latency Coding in Biologically Inspired Microelectronic Nose [J].
Chen, Hung Tat ;
Ng, Kwan Ting ;
Bermak, Amine ;
Law, Man Kay ;
Martinez, Dominique .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2011, 5 (02) :160-168
[9]   Spike synchronization in a biophysically-detailed model of the olfactory bulb [J].
Davison, AP ;
Feng, JF ;
Brown, D .
NEUROCOMPUTING, 2001, 38 :515-521
[10]   Classifying continuous, real-time e-nose sensor data using a bio-inspired spiking network modelled on the insect olfactory system [J].
Diamond, A. ;
Schmuker, M. ;
Berna, A. Z. ;
Trowell, S. ;
Nowotny, Thomas .
BIOINSPIRATION & BIOMIMETICS, 2016, 11 (02)