共 24 条
Effects of total variation regularization noise reduction algorithm in improved K-edge log-subtraction X-ray images with photon-counting cadmium telluride detectors
被引:4
作者:
Kim, Kyuseok
[1
]
Lee, Youngjin
[2
]
机构:
[1] Yonsei Univ, Dept Radiat Convergence Engn, 1 Yonseidae Gil, Wonju, Gangwon Do, South Korea
[2] Gachon Univ, Dept Radiol Sci, 191 Hambakmoero, Incheon, South Korea
来源:
OPTIK
|
2020年
/
206卷
基金:
新加坡国家研究基金会;
关键词:
Photon counting detector;
Cadmium telluride;
Total variation noise reduction approach;
K-edge log-subtraction imaging method;
Monte Carlo simulation;
MONTE-CARLO-SIMULATION;
CDTE;
SYSTEM;
FEASIBILITY;
PROGRESS;
CT;
D O I:
10.1016/j.ijleo.2020.164380
中图分类号:
O43 [光学];
学科分类号:
070207 ;
0803 ;
摘要:
X-ray systems with photon-counting cadmium telluride (CdTe) detectors can achieve greatly improved images by using the K-edge log-subtraction (KELS) imaging method. This paper discusses methods for acquiring KELS images with photon-counting CdTe detectors and applying the modeled total variation (TV) regularization noise reduction algorithm to the obtained images. Monte Carlo simulation using the Geant4 Application for Tomographic Emission platform was used to model the system. To demonstrate the usefulness of the proposed TV algorithm, we investigated the normalized noise power spectrum, contrast to noise ratio, and no reference-based assessment parameter using a natural image quality evaluator. The results demonstrate that the proposed TV noise reduction regularization algorithm can better preserve image details than the conventional denoising methods in all the evaluation parameters.
引用
收藏
页数:6
相关论文