Random Forest Analysis of X-ray Diffraction and Scattering Data on Crystalline Polymer

被引:1
|
作者
Takahashi, Kazuki K.
Amamoto, Yoshifumi
Kikutake, Hiroteru
Ito, Mariko I.
Takahara, Atsushi
Ohnishi, Takaaki
机构
关键词
Random Forest; Importance; Crystalline polymers; Polylactic acid; X-ray diffraction and scattering;
D O I
10.2477/jccj.2021-0042
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Crystalline polymers have a hierarchical structure in which polymer chains are folded. Although each hierarchical structure strongly affects the physical properties of crystalline polymers, it is hard to describe the relationship between the formation conditions, crystal structure and physical properties. We used Random Forest regression to comprehensively investigate the relationship between these features of polylactic acid (PLA), a biodegradable crystalline polymer. It was suggested that important features for mechanical property and biodegradability, where the trade-off relationship between them is a significant issue of PLA, are related to the different level crystal structures. This shows that it is possible to use Random Forest for complex prediction of crystalline polymer properties to search for important forming conditions and crystal structures.
引用
收藏
页码:103 / 105
页数:3
相关论文
共 50 条
  • [31] A random forest-based analysis of household survey data to infer insights on digital inequality
    Nischal Regmi
    Iran Journal of Computer Science, 2023, 6 (4) : 333 - 344
  • [32] A Distributed Ensemble of Deep Convolutional Neural Networks with Random Forest for Big Data Sentiment Analysis
    Hammou, Badr Ait
    Lahcen, Ayoub Ait
    Mouline, Salma
    MOBILE, SECURE, AND PROGRAMMABLE NETWORKING, 2019, 11557 : 153 - 162
  • [33] Modern data mining tools in descriptive sensory analysis: A case study with a Random forest approach
    Granitto, P. M.
    Gasperi, F.
    Biasioli, F.
    Trainotti, E.
    Furlanello, C.
    FOOD QUALITY AND PREFERENCE, 2007, 18 (04) : 681 - 689
  • [34] Bank financial sustainability evaluation: Data envelopment analysis with random forest and Shapley additive explanations
    Shi, Yu
    Charles, Vincent
    Zhu, Joe
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2025, 321 (02) : 614 - 630
  • [35] A Data Fusion Analysis and Random Forest Learning for Enhanced Control and Failure Diagnosis in Rotating Machinery
    Mejbel, Basim Ghalib
    Sarow, Salwa Ahmad
    Al-Sharify, Mushtaq Talib
    Al-Haddad, Luttfi A.
    Ogaili, Ahmed Ali Farhan
    Al-Sharify, Zainab T.
    JOURNAL OF FAILURE ANALYSIS AND PREVENTION, 2024, : 2979 - 2989
  • [36] BayesRandomForest: An R implementation of Bayesian Random Forest for Regression Analysis of High-dimensional Data
    Olaniran, Oyebayo Ridwan
    Bin Abdullah, Mohd Asrul Affendi
    ROMANIAN STATISTICAL REVIEW, 2018, (01) : 95 - 102
  • [37] Analysis of Student Performance to Predict Career Specialization using Random Forest Data Mining Technique
    Hermogenes, Mary Grace G.
    Repaso, Jennifer Anne A.
    Perez, Joann G.
    PROCEEDINGS OF THE 2024 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION TECHNOLOGY, ICIIT 2024, 2024, : 302 - 305
  • [38] Utilizing Multifractal and Compositional Data Analysis Combined with Random Forest for Mineral Prediction in Goulmima, Morocco
    Wu, Yanbin
    Sun, Li
    Qu, Zhiguang
    Yu, Wenming
    Zhang, Peng
    Jing, Guoqing
    Shen, Pengliang
    Tian, Shujuan
    Wang, Qicai
    Liu, Hua
    Wu, Fafu
    Liu, Jiangtao
    Xiao, Keyan
    Tang, Rui
    MINERALS, 2025, 15 (03)
  • [39] Rapid soil fertility prediction using X-ray fluorescence data and machine learning algorithms
    Benedet, Lucas
    Acuna-Guzman, Salvador F.
    Faria, Wilson Missina
    Godinho Silva, Sergio Henrique
    Mancini, Marcelo
    dos Santos Teixeira, Anita Fernanda
    Pereira Pierangeli, Luiza Maria
    Acerbi Junior, Fausto Weimar
    Gomide, Lucas Rezende
    Padua Junior, Alceu Linares
    de Souza, Igor Alexandre
    de Menezes, Michele Duarte
    Marques, Joao Jose
    Guimaraes Guilherme, Luiz Roberto
    Curi, Nilton
    CATENA, 2021, 197
  • [40] Morphology and structure of gold-lithium niobate thin film: A laboratory source X-ray scattering study
    Hazra, S.
    APPLIED SURFACE SCIENCE, 2006, 253 (04) : 2154 - 2157