Spin squeezing by tensor twisting and Lipkin-Meshkov-Glick dynamics in a toroidal Bose-Einstein condensate with spatially modulated nonlinearity

被引:36
作者
Opatrny, Tomas [1 ]
Kolar, Michal [1 ]
Das, Kunal K. [2 ]
机构
[1] Palacky Univ, Fac Sci, Dept Opt, Olomouc 77146, Czech Republic
[2] Kutztown Univ Penn, Dept Phys Sci, Kutztown, PA 19530 USA
来源
PHYSICAL REVIEW A | 2015年 / 91卷 / 05期
基金
美国国家科学基金会;
关键词
BODY APPROXIMATION METHODS; SOLVABLE MODEL; VALIDITY; ENTANGLEMENT; NOISE;
D O I
10.1103/PhysRevA.91.053612
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a scheme for spin squeezing in the orbital motion of a Bose-Einstein condensate in a toroidal trap. A circular lattice couples two counterrotating modes and squeezing is generated by the nonlinear interaction spatially modulated at half the lattice period. By varying the amplitude and phase of the modulation, various cases of the twisting tensor can be directly realized, leading to different squeezing regimes. These include the one-axis twisting and two-axis countertwisting that are often discussed as the most important paradigms for spin squeezing. Our scheme naturally realizes the Lipkin-Meshkov-Glick model with the freedom to vary all its parameters simultaneously.
引用
收藏
页数:8
相关论文
共 57 条
[31]   Optimum spin squeezing in Bose-Einstein condensates with particle losses [J].
Li, Yun ;
Castin, Y. ;
Sinatra, A. .
PHYSICAL REVIEW LETTERS, 2008, 100 (21)
[32]   VALIDITY OF MANY-BODY APPROXIMATION METHODS FOR A SOLVABLE MODEL .I. EXACT SOLUTIONS AND PERTURBATION THEORY [J].
LIPKIN, HJ ;
MESHKOV, N ;
GLICK, AJ .
NUCLEAR PHYSICS, 1965, 62 (02) :188-&
[33]   Spin Squeezing: Transforming One-Axis Twisting into Two-Axis Twisting [J].
Liu, Y. C. ;
Xu, Z. F. ;
Jin, G. R. ;
You, L. .
PHYSICAL REVIEW LETTERS, 2011, 107 (01)
[34]   Optical control of magnetic Feshbach resonances in Bose gases [J].
Liu, Yong ;
Li, Jian ;
Wang, Gao-Ren ;
Cong, Shu-Lin .
PHYSICS LETTERS A, 2014, 378 (1-2) :43-47
[35]   Polarization squeezing and nonclassical properties of light [J].
Luis, Alfredo ;
Korolkova, Natalia .
PHYSICAL REVIEW A, 2006, 74 (04)
[36]   VALIDITY OF MANY-BODY APPROXIMATION METHODS FOR A SOLVABLE MODEL .2. LINEARIZATION PROCEDURES [J].
MESHKOV, N ;
GLICK, AJ ;
LIPKIN, HJ .
NUCLEAR PHYSICS, 1965, 62 (02) :199-&
[37]   Many-particle entanglement in two-component Bose-Einstein condensates [J].
Micheli, A ;
Jaksch, D ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW A, 2003, 67 (01) :11
[38]   Quantum noise in three-dimensional BEC interferometry [J].
Opanchuk, B. ;
Egorov, M. ;
Hoffmann, S. ;
Sidorov, A. I. ;
Drummond, P. D. .
EPL, 2012, 97 (05)
[39]   Twisting tensor and spin squeezing [J].
Opatrny, Tomas .
PHYSICAL REVIEW A, 2015, 91 (05)
[40]   Equivalence of critical scaling laws for many-body entanglement in the Lipkin-Meshkov-Glick model [J].
Orus, Roman ;
Dusuel, Sebastien ;
Vidal, Julien .
PHYSICAL REVIEW LETTERS, 2008, 101 (02)