Small-mass behavior of quantum Gibbs states for lattice models with unbounded spins

被引:8
作者
Albeverio, S [1 ]
Kondratiev, YG
Minlos, RA
Rebenko, AL
机构
[1] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
[2] Ruhr Univ Bochum, Fac Math, D-44780 Bochum, Germany
[3] BiBoS Res Ctr, D-33615 Bielefeld, Germany
[4] Math Inst, UA-252601 Kiev, Ukraine
[5] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow, Russia
[6] Math Inst, UA-252601 Kiev, Ukraine
关键词
quantum Gibbs state; lattice model; unbounded spin; small mass; cluster expansion;
D O I
10.1023/A:1023009130254
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct the distribution of the infinite-dimensional Markov process associated with a finite-temperature Gibbs state for a quantum mechanical anharmonic crystal. The corresponding state is constructed via a cluster expansion technique for an arbitrary fixed temperature and, correspondingly, small enough masses of particles.
引用
收藏
页码:1153 / 1172
页数:20
相关论文
共 22 条
[1]   HOMOGENEOUS RANDOM FIELDS AND STATISTICAL-MECHANICS [J].
ALBEVERIO, S ;
HOEGHKROHN, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1975, 19 (03) :242-272
[2]   Absence of critical points for a class of quantum hierarchical models [J].
Albeverio, S ;
Kondratiev, YG ;
Kozitsky, YV .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 187 (01) :1-18
[3]   Suppression of critical fluctuations by strong quantum effects in quantum lattice systems [J].
Albeverio, S ;
Kondratiev, Y ;
Kozitsky, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 194 (03) :493-512
[4]   UNIQUENESS OF GIBBS-STATES FOR GENERAL P(PSI)2-WEAK COUPLING MODELS BY CLUSTER-EXPANSION [J].
ALBEVERIO, S ;
HOEGHKROHN, R ;
ZEGARLINSKI, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (04) :683-697
[5]   Uniqueness of Gibbs states for quantum lattice systems [J].
Albeverio, S ;
Kondratiev, YG ;
Rockner, M ;
Tsikalenko, TV .
PROBABILITY THEORY AND RELATED FIELDS, 1997, 108 (02) :193-218
[6]  
BARBULYAK VS, 1991, REPORTS NAT ACAD SCI, V8, P31
[7]   A NOTE ON CLUSTER EXPANSIONS, TREE GRAPH IDENTITIES, EXTRA 1/N FACTORS [J].
BATTLE, GA ;
FEDERBUSH, P .
LETTERS IN MATHEMATICAL PHYSICS, 1984, 8 (01) :55-57
[8]   A NEW COMBINATORIC ESTIMATE FOR CLUSTER EXPANSIONS [J].
BATTLE, GA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :133-139
[9]  
BRUCE AD, 1981, STRUCTURAL PHASE TRA
[10]   NEW FORM OF MAYER EXPANSION IN CLASSICAL STATISTICAL-MECHANICS [J].
BRYDGES, D ;
FEDERBUSH, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (10) :2064-2067