Hausdorff dimension of measures via Poincare recurrence

被引:109
作者
Barreira, L [1 ]
Saussol, B
机构
[1] Inst Super Tecn, Dept Matemat, P-1049001 Lisbon, Portugal
[2] Univ Picardie, CNRS, FRE 2270, LAMFA, F-80039 Amiens, France
关键词
D O I
10.1007/s002200100427
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the quantitative behavior of Poincare recurrence. In particular, for an equilibrium measure on a locally maximal hyperbolic set of a C1+alpha diffeomorphism f, we show that the recurrence rate to each point coincides almost everywhere with the Hausdorff dimension d of the measure, that is, inf{k > 0 : f(k)x epsilon B(x, r)} similar to r(-d). This result is a non-trivial generalization of work of Boshernitzan concerning the quantitative behavior of recurrence, and is a dimensional version of work of Ornstein and Weiss for the entropy. We stress that our approach uses different techniques. Furthermore, our results motivate the introduction of a new method to compute the Hausdorff dimension of measures.
引用
收藏
页码:443 / 463
页数:21
相关论文
共 13 条
[1]   Dimension and product structure of hyperbolic measures [J].
Barreira, L ;
Pesin, Y ;
Schmeling, J .
ANNALS OF MATHEMATICS, 1999, 149 (03) :755-783
[2]   Multifractal analysis of hyperbolic flows [J].
Barreira, L ;
Saussol, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (02) :339-371
[3]   QUANTITATIVE RECURRENCE RESULTS [J].
BOSHERNITZAN, MD .
INVENTIONES MATHEMATICAE, 1993, 113 (03) :617-631
[4]   EXPANSIVE ONE-PARAMETER FLOWS [J].
BOWEN, R ;
WALTERS, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1972, 12 (01) :180-&
[5]  
Federer H., 1969, GEOMETRIC MEASURE TH
[6]   Statistics of return times: A general framework and new applications [J].
Hirata, M ;
Saussol, B ;
Vaienti, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 206 (01) :33-55
[7]   THE METRIC ENTROPY OF DIFFEOMORPHISMS .2. RELATIONS BETWEEN ENTROPY, EXPONENTS AND DIMENSION [J].
LEDRAPPIER, F ;
YOUNG, LS .
ANNALS OF MATHEMATICS, 1985, 122 (03) :540-574
[8]   ENTROPY AND DATA-COMPRESSION SCHEMES [J].
ORNSTEIN, DS ;
WEISS, B .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (01) :78-83
[9]   On the dimension of deterministic and random Cantor-like sets, symbolic dynamics, and the Eckmann-Ruelle conjecture [J].
Pesin, Y ;
Weiss, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 182 (01) :105-153
[10]  
Pesin Y.B., 1997, DIMENSION THEORY DYN