Which Graphs have Non-integral Spectra?

被引:8
作者
Moenius, Katja [1 ]
Steuding, Joern [1 ]
Stumpf, Pascal [1 ]
机构
[1] Wurzburg Univ, Dept Math, Emil Fischer Str 40, D-97074 Wurzburg, Germany
关键词
Simple graphs; Diameter; Eigenvalues; Algebraic integers; NUMBER;
D O I
10.1007/s00373-018-1947-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The eigenvalues of a graph are algebraic integers in some algebraic extension of the rationals. We investigate the algebraic degree of these eigenvalues with respect to graph-theoretical properties. We obtain quantitative results showing that a graph with large diameter must have some eigenvalues of large algebraic degree.
引用
收藏
页码:1507 / 1518
页数:12
相关论文
共 12 条
[1]   There are only finitely many distance-regular graphs of fixed valency greater than two [J].
Bang, S. ;
Dubickas, A. ;
Koolen, J. H. ;
Moulton, V. .
ADVANCES IN MATHEMATICS, 2015, 269 :1-55
[2]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[3]   The number of extensions of a number field with fixed degree and bounded discriminant [J].
Ellenberg, Jordan S. ;
Venkatesh, Akshay .
ANNALS OF MATHEMATICS, 2006, 163 (02) :723-741
[4]  
Harary F., 1974, Lecture Notes in Mathematics, V406, P45
[5]  
Hoffman AJ, 1975, MAA STUD MATH, V12, P225
[6]  
Kronecker L., 1857, J. Reine Angew. Math., V53, P173
[7]  
MOLLIN R.A., 1999, Algebraic Number Theory
[8]  
ROBINSON RM, 1962, STUDIES MATH ANAL RE, P305
[9]  
SCHMIDT WM, 1995, ASTERISQUE, P189
[10]  
Tenenbaum G., 1995, Cambridge Studies in Advanced Mathematics