Engineering of Streptomyces lividans for heterologous expression of secondary metabolite gene clusters

被引:80
作者
Ahmed, Yousra [1 ]
Rebets, Yuriy [1 ]
Estevez, Marta Rodriguez [1 ]
Zapp, Josef [2 ]
Myronovskyi, Maksym [1 ]
Luzhetskyy, Andriy [1 ,3 ]
机构
[1] Univ Saarland, Pharmazeut Biotechnol, Saarbrucken, Germany
[2] Univ Saarland, Pharmazeut Biol, Saarbrucken, Germany
[3] Helmholtz Inst Pharmazeut Forsch Saarland, Saarbrucken, Germany
关键词
Heterologous expression; Streptomyces; Natural product; Heterologous host; Gene cluster; COMPLETE GENOME SEQUENCE; DIRECT CLONING; PSEUDO-ATTB; COELICOLOR; BIOSYNTHESIS; POLYKETIDE; RECOMBINATION; ALBUS; HOST; DNA;
D O I
10.1186/s12934-020-1277-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Heterologous expression of secondary metabolite gene clusters is used to achieve increased production of desired compounds, activate cryptic gene clusters, manipulate clusters from genetically unamenable strains, obtain natural products from uncultivable species, create new unnatural pathways, etc. Several Streptomyces species are genetically engineered for use as hosts for heterologous expression of gene clusters. S. lividans TK24 is one of the most studied and genetically tractable actinobacteria, which remain untapped. It was therefore important to generate S. lividans chassis strains with clean metabolic backgrounds. Results In this study, we generated a set of S. lividans chassis strains by deleting endogenous gene clusters and introducing additional phi C31 attB loci for site-specific integration of foreign DNA. In addition to the simplified metabolic background, the engineered S. lividans strains had better growth characteristics than the parental strain in liquid production medium. The utility of the developed strains was validated by expressing four secondary metabolite gene clusters responsible for the production of different classes of natural products. Engineered strains were found to be superior to the parental strain in production of heterologous natural products. Furthermore, S. lividans-based strains were better producers of amino acid-based natural products than other tested common hosts. Expression of a Streptomyces albus subsp. chlorinus NRRL B-24108 genomic library in the modified S. lividans Delta YA9 and S. albus Del14 strains resulted in the production of 7 potentially new compounds, only one of which was produced in both strains. Conclusion The constructed S. lividans-based strains are a great complement to the panel of heterologous hosts for actinobacterial secondary metabolite gene expression. The expansion of the number of such engineered strains will contribute to an increased success rate in isolation of new natural products originating from the expression of genomic and metagenomic libraries, thus raising the chance to obtain novel biologically active compounds.
引用
收藏
页数:16
相关论文
共 69 条
[1]   Identification of butenolide regulatory system controlling secondary metabolism in Streptomyces albus J1074 [J].
Ahmed, Yousra ;
Rebets, Yuriy ;
Tokovenko, Bogdan ;
Broetz, Elke ;
Luzhetskyy, Andriy .
SCIENTIFIC REPORTS, 2017, 7
[2]  
ANNE J, 1984, J GEN MICROBIOL, V130, P2639
[3]   Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans [J].
Anne, Jozef ;
Vrancken, Kristof ;
Van Mellaert, Lieve ;
Van Impe, Jan ;
Bernaerts, Kristel .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2014, 1843 (08) :1750-1761
[4]   Investigations into Viomycin Biosynthesis by Using Heterologous Production in Streptomyces lividans [J].
Barkei, John J. ;
Kevany, Brian M. ;
Felnagle, Elizabeth A. ;
Thomas, Michael G. .
CHEMBIOCHEM, 2009, 10 (02) :366-376
[5]   Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145 [J].
Barona-Gómez, F ;
Wong, U ;
Giannakopulos, AE ;
Derrick, PJ ;
Challis, GL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (50) :16282-16283
[6]   Multiple biosynthetic and uptake systems mediate siderophore-dependent iron acquisition in Streptomyces coelicolor A3(2) and Streptomyces ambofaciens ATCC 23877 [J].
Barona-Gomez, Francisco ;
Lautru, Sylvie ;
Francou, Francois-Xavier ;
Leblond, Pierre ;
Pernodet, Jean-Luc ;
Challis, Gregory L. .
MICROBIOLOGY-SGM, 2006, 152 :3355-3366
[7]   Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) [J].
Bentley, SD ;
Chater, KF ;
Cerdeño-Tárraga, AM ;
Challis, GL ;
Thomson, NR ;
James, KD ;
Harris, DE ;
Quail, MA ;
Kieser, H ;
Harper, D ;
Bateman, A ;
Brown, S ;
Chandra, G ;
Chen, CW ;
Collins, M ;
Cronin, A ;
Fraser, A ;
Goble, A ;
Hidalgo, J ;
Hornsby, T ;
Howarth, S ;
Huang, CH ;
Kieser, T ;
Larke, L ;
Murphy, L ;
Oliver, K ;
O'Neil, S ;
Rabbinowitsch, E ;
Rajandream, MA ;
Rutherford, K ;
Rutter, S ;
Seeger, K ;
Saunders, D ;
Sharp, S ;
Squares, R ;
Squares, S ;
Taylor, K ;
Warren, T ;
Wietzorrek, A ;
Woodward, J ;
Barrell, BG ;
Parkhill, J ;
Hopwood, DA .
NATURE, 2002, 417 (6885) :141-147
[8]   Bioactive microbial metabolites -: A personal view [J].
Bérdy, J .
JOURNAL OF ANTIBIOTICS, 2005, 58 (01) :1-26
[9]   Unusual site-specific DNA integration into the highly active pseudo-attB of the Streptomyces albus J1074 genome [J].
Bilyk, Bohdan ;
Luzhetskyy, Andriy .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (11) :5095-5104
[10]   antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification [J].
Blin, Kai ;
Wolf, Thomas ;
Chevrette, Marc G. ;
Lu, Xiaowen ;
Schwalen, Christopher J. ;
Kautsar, Satria A. ;
Duran, Hernando G. Suarez ;
Santos, Emmanuel L. C. de los ;
Kim, Hyun Uk ;
Nave, Mariana ;
Dickschat, Jeroen S. ;
Mitchell, Douglas A. ;
Shelest, Ekaterina ;
Breitling, Rainer ;
Takano, Eriko ;
Lee, Sang Yup ;
Weber, Tilmann ;
Medema, Marnix H. .
NUCLEIC ACIDS RESEARCH, 2017, 45 (W1) :W36-W41