Relaxation and domain formation in incommensurate two-dimensional heterostructures

被引:227
作者
Carr, Stephen [1 ]
Massatt, Daniel [2 ]
Torrisi, Steven B. [1 ]
Cazeaux, Paul [3 ]
Luskin, Mitchell [2 ]
Kaxiras, Efthimios [1 ,4 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[3] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[4] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
GRAPHENE; STACKING; BOUNDARIES; BRITTLE; ENERGY; MOIRE;
D O I
10.1103/PhysRevB.98.224102
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce configuration space as a natural representation for calculating the mechanical relaxation patterns of incommensurate two-dimensional (2D) bilayers. The approach can be applied to a wide variety of 2D materials through the use of a continuum model in combination with a generalized stacking fault energy for interlayer interactions. We present computational results for small-angle twisted bilayer graphene and molybdenum disulfide (MoS2), a representative material of the transition-metal dichalcogenide family of 2D semiconductors. We calculate accurate relaxations for MoS2 even at small twist-angle values, enabled by the fact that our approach does not rely on empirical atomistic potentials for interlayer coupling. The results demonstrate the efficiency of the configuration space method by computing relaxations with minimal computational cost. We also outline a general explanation of domain formation in 2D bilayers with nearly aligned lattices, taking advantage of the relationship between real space and configuration space. The configuration space approach also enables calculation of relaxations in incommensurate multilayer systems.
引用
收藏
页数:7
相关论文
共 40 条
[1]   Strain solitons and topological defects in bilayer graphene [J].
Alden, Jonathan S. ;
Tsen, Adam W. ;
Huang, Pinshane Y. ;
Hovden, Robert ;
Brown, Lola ;
Park, Jiwoong ;
Muller, David A. ;
McEuen, Paul L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (28) :11256-11260
[2]   THE DISCRETE FRENKEL-KONTOROVA MODEL AND ITS EXTENSIONS .1. EXACT RESULTS FOR THE GROUND-STATES [J].
AUBRY, S ;
LEDAERON, PY .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 8 (03) :381-422
[3]   Generalized Kubo formulas for the transport properties of incommensurate 2D atomic heterostructures [J].
Cances, Eric ;
Cazeaux, Paul ;
Luskin, Mitchell .
JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (06)
[4]   Twistronics: Manipulating the electronic properties of two-dimensional layered structures through their twist angle [J].
Carr, Stephen ;
Massatt, Daniel ;
Fang, Shiang ;
Cazeaux, Paul ;
Luskin, Mitchell ;
Kaxiras, Efthimios .
PHYSICAL REVIEW B, 2017, 95 (07)
[5]  
Cazeaux P., ARXIV180610395PHYSIC
[6]   ANALYSIS OF RIPPLING IN INCOMMENSURATE ONE-DIMENSIONAL COUPLED CHAINS [J].
Cazeaux, Paul ;
Luskin, Mitchell ;
Tadmor, Ellad B. .
MULTISCALE MODELING & SIMULATION, 2017, 15 (01) :56-73
[7]   Twisted Bilayer Graphene: Moire with a Twist [J].
Dai, Shuyang ;
Xiang, Yang ;
Srolovitz, David J. .
NANO LETTERS, 2016, 16 (09) :5923-5927
[8]   Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices [J].
Dean, C. R. ;
Wang, L. ;
Maher, P. ;
Forsythe, C. ;
Ghahari, F. ;
Gao, Y. ;
Katoch, J. ;
Ishigami, M. ;
Moon, P. ;
Koshino, M. ;
Taniguchi, T. ;
Watanabe, K. ;
Shepard, K. L. ;
Hone, J. ;
Kim, P. .
NATURE, 2013, 497 (7451) :598-602
[9]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[10]   Helical network model for twisted bilayer graphene [J].
Efimkin, Dmitry K. ;
MacDonald, Allan H. .
PHYSICAL REVIEW B, 2018, 98 (03)