A Bijection between Atomic Partitions and Unsplitable Partitions

被引:0
作者
Chen, William Y. C. [1 ]
Li, Teresa X. S. [1 ]
Wang, David G. L. [2 ]
机构
[1] Nankai Univ, Ctr Combinator, LPMC TJKLC, Tianjin 300071, Peoples R China
[2] Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
基金
美国国家科学基金会;
关键词
NONCOMMUTING VARIABLES; SYMMETRIC FUNCTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the study of the algebra NCSym of symmetric functions in noncommutative variables, Bergeron and Zabrocki found a free generating set consisting of power sum symmetric functions indexed by atomic partitions. On the other hand, Bergeron, Reutenauer, Rosas, and Zabrocki studied another free generating set of NCSym consisting of monomial symmetric functions indexed by unsplitable partitions. Can and Sagan raised the question of finding a bijection between atomic partitions and unsplitable partitions. In this paper, we provide such a bijection.
引用
收藏
页数:7
相关论文
共 6 条
  • [1] Bergeron N, 2006, ELECTRON J COMB, V13
  • [2] BERGERON N, ARXIVMATHCO0509265
  • [3] Invariants and coinvariants of the symmetric group in noncommuting variables
    Bergeron, Nantel
    Reutenauer, Christophe
    Rosas, Mercedes
    Zabrocki, Mike
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (02): : 266 - 296
  • [4] CAN MB, ARXIVMATHCO10082950
  • [5] Symmetric functions in noncommuting variables
    Rosas, MH
    Sagan, BE
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (01) : 215 - 232
  • [6] Wolf M., 1936, DUKE MATH J, V2, P626, DOI 10.1215/S0012-7094-36-00253-3