Comment on "Shallow water in an open sea or a wide channel: Auto-and non-auto-Backlund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system"

被引:83
作者
Gao, Xiao-Tian
Tian, Bo [1 ]
Shen, Yuan
Feng, Chun-Hui
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Oceanic water waves; Generalized (2+1)-dimensional dispersive long-wave system; Similarity reductions; Symbolic computation; KADOMTSEV-PETVIASHVILI EQUATION; HYBRID SOLUTIONS; MODEL; LUMP;
D O I
10.1016/j.chaos.2021.111222
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Active researches on the oceanic water waves have been done. As for the nonlinear and dispersive long gravity waves in two horizontal directions on the shallow water of an open sea or a wide channel of finite depth, the paper commented [i.e., Chaos Solitons Fract. 138, 109950 (2020)] has investigated a gen-eralized (2 + 1)-dimensional dispersive long-wave system. In respect of the horizontal velocity and the wave elevation above the undisturbed water surface, with the help of symbolic computation, we give rise to four sets of the similarity reductions, each of which leads to a known ordinary differential equation. All of our results depend on the constant coefficients in the original system. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:3
相关论文
共 48 条
[1]   Abundant numerical and analytical solutions of the generalized formula of Hirota-Satsuma coupled KdV system [J].
Ali, Ahmad T. ;
Khater, Mostafa M. A. ;
Attia, Raghda A. M. ;
Abdel-Aty, Abdel-Haleem ;
Lu, Dianchen .
CHAOS SOLITONS & FRACTALS, 2020, 131
[2]   Competition model in groundwater: Three boreholes taping water out from same aquifer [J].
Alqahtani, Rubayyi T. ;
Atangana, Abdon .
CHAOS SOLITONS & FRACTALS, 2019, 128 :98-103
[3]   Fractional modified Kawahara equation with Mittag-Leffler law [J].
Bhatter, Sanjay ;
Mathur, Amit ;
Kumar, Devendra ;
Nisar, Kottakkaran Sooppy ;
Singh, Jagdev .
CHAOS SOLITONS & FRACTALS, 2020, 131
[4]   Mesoscale-submesoscale interactions in the Gulf of Mexico: From oil dispersion to climate [J].
Bracco, Annalisa ;
Liu, Guangpeng ;
Sun, Daoxun .
CHAOS SOLITONS & FRACTALS, 2019, 119 :63-72
[5]  
Chen YQ, 2021, IN PRESS
[6]   Solitons and breather waves for the generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics, ocean dynamics and plasma physics [J].
Deng, Gao-Fu ;
Gao, Yi-Tian ;
Ding, Cui-Cui ;
Su, Jing-Jing .
CHAOS SOLITONS & FRACTALS, 2020, 140
[7]   Solitons and periodic waves for the (2+1)-dimensional generalized Caudrey-Dodd-Gibbon-Kotera-Sawada equation in fluid mechanics [J].
Deng, Gao-Fu ;
Gao, Yi-Tian ;
Su, Jing-Jing ;
Ding, Cui-Cui ;
Jia, Ting-Ting .
NONLINEAR DYNAMICS, 2020, 99 (02) :1039-1052
[8]   Lax pair, conservation laws, Darboux transformation, breathers and rogue waves for the coupled nonautonomous nonlinear Schrodinger system in an inhomogeneous plasma [J].
Ding, Cui-Cui ;
Gao, Yi-Tian ;
Deng, Gao-Fu ;
Wang, Dong .
CHAOS SOLITONS & FRACTALS, 2020, 133
[9]   Breather and hybrid solutions for a generalized (3+1)-dimensional B-type Kadomtsev-Petviashvili equation for the water waves [J].
Ding, Cui-Cui ;
Gao, Yi-Tian ;
Deng, Gao-Fu .
NONLINEAR DYNAMICS, 2019, 97 (04) :2023-2040
[10]   Bilinear form, solitons, breathers and lumps of a (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation in ocean dynamics, fluid mechanics and plasma physics [J].
Feng, Yu-Jie ;
Gao, Yi-Tian ;
Li, Liu-Qing ;
Jia, Ting-Ting .
EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (03)