Generalized proportional fractional integral functional bounds in Minkowski's inequalities

被引:9
作者
Aljaaidi, Tariq A. [1 ]
Pachpatte, Deepak B. [1 ]
Shatanawi, Wasfi [2 ,3 ,4 ]
Abdo, Mohammed S. [5 ]
Abodayeh, Kamaleldin [2 ]
机构
[1] Dr Babasaheb Ambedkar Marathwada Univ, Dept Math, Aurangabad, MS, India
[2] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[4] Hashemite Univ, Dept Math, Zarqa, Jordan
[5] Hodeidah Univ, Dept Math, Al Hodeidah, Yemen
关键词
Minkowski inequalities; Fractional inequalities; psi-proportional fractional operators; GRUSS-TYPE INEQUALITIES;
D O I
10.1186/s13662-021-03582-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this research paper, we improve some fractional integral inequalities of Minkowski-type. Precisely, we use a proportional fractional integral operator with respect to another strictly increasing continuous function psi. The functions used in this work are bounded by two positive functions to get reverse Minkowski inequalities in a new sense. Moreover, we introduce new fractional integral inequalities which have a close relationship to the reverse Minkowski-type inequalities via psi-proportional fractional integral, then with the help of this fractional integral operator, we discuss some new special cases of reverse Minkowski-type inequalities through this work. An open issue is covered in the conclusion section to extend the current findings to be more general.
引用
收藏
页数:17
相关论文
共 41 条
  • [1] Analysis of some generalized ABC - Fractional logistic models
    Abdeljawad, Thabet
    Hajji, Mohamed A.
    Al-Mdallal, Qasem M.
    Jarad, Fahd
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (04) : 2141 - 2148
  • [2] Existence of positive solutions for weighted fractional order differential equations
    Abdo, Mohammed S.
    Abdeljawad, Thabet
    Ali, Saeed M.
    Shah, Kamal
    Jarad, Fahd
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 141
  • [3] Existence and Ulam stability results of a coupled system for terminal value problems involvingψ-Hilfer fractional operator
    Abdo, Mohammed S.
    Shah, Kamal
    Panchal, Satish K.
    Wahash, Hanan A.
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [4] Fractal-fractional mathematical modeling and forecasting of new cases and deaths of COVID-19 epidemic outbreaks in India
    Abdulwasaa, Mansour A.
    Abdo, Mohammed S.
    Shah, Kamal
    Nofal, Taher A.
    Panchal, Satish K.
    Kawale, Sunil V.
    Abdel-Aty, Abdel-Haleem
    [J]. RESULTS IN PHYSICS, 2021, 20
  • [5] On Generalized Fractional Operators and a Gronwall Type Inequality with Applications
    Adjabi, Yassine
    Jarad, Fahd
    Abdeljawad, Thabet
    [J]. FILOMAT, 2017, 31 (17) : 5457 - 5473
  • [6] Aljaaidi TA, 2021, REND CIRC MAT PALERM, V70, P893, DOI 10.1007/s12215-020-00539-w
  • [7] Some Gruss-type inequalities using generalized Katugampola fractional integral
    Aljaaidi, Tariq A.
    Pachpatte, Deepak B.
    [J]. AIMS MATHEMATICS, 2020, 5 (02): : 1011 - 1024
  • [8] Aljaaidia T. A., 2021, Advances in the Theory of Nonlinear Analysis and its Applications, V5, P72, DOI [10.31197/atnaa.756605, DOI 10.31197/ATNAA.756605]
  • [9] A Gronwall inequality via the generalized proportional fractional derivative with applications
    Alzabut, Jehad
    Abdeljawad, Thabet
    Jarad, Fahd
    Sudsutad, Weerawat
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [10] Andric M., 2020, J INDIAN MATH SOC, V87, P137