Predicting corporate defaults using machine learning with geometric-lag variables

被引:9
作者
Kim, Hyeongjun [1 ]
Cho, Hoon [2 ]
Ryu, Doojin [3 ]
机构
[1] Yeungnam Univ, Dept Business Adm, Gyongsan, South Korea
[2] Korea Adv Inst Sci & Technol, Coll Business, Seoul, South Korea
[3] Sungkyunkwan Univ, Coll Econ, Seoul, South Korea
关键词
classification; corporate default prediction; geometric lag; machine learning; risk measure; BANKRUPTCY PREDICTION; FINANCIAL RATIOS; DISCRIMINANT-ANALYSIS; NEURAL-NETWORKS; RISK; INFORMATION; ALGORITHM; MODELS;
D O I
10.1080/10293523.2021.1941554
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This study examines whether corporate default prediction techniques based on machine learning can achieve better performance by using geometrically declining weighted average values of the time series variables, that is, geometric-lag variables. We test four machine learning algorithms: logistic regression, random forest, support vector machine, and feedforward neural network. The geometric-lag financial variables capture each company's historical financial information. Using such variables reduces the computation time and improves the prediction performance. The actual default rates increase with the predicted default probabilities, suggesting that our model predictions can help investors make better investment decisions.
引用
收藏
页码:161 / 175
页数:15
相关论文
共 44 条
[1]   FINANCIAL RATIOS, DISCRIMINANT ANALYSIS AND PREDICTION OF CORPORATE BANKRUPTCY [J].
ALTMAN, EI .
JOURNAL OF FINANCE, 1968, 23 (04) :589-609
[2]   CORPORATE DISTRESS DIAGNOSIS - COMPARISONS USING LINEAR DISCRIMINANT-ANALYSIS AND NEURAL NETWORKS (THE ITALIAN EXPERIENCE) [J].
ALTMAN, EI ;
MARCO, G ;
VARETTO, F .
JOURNAL OF BANKING & FINANCE, 1994, 18 (03) :505-529
[3]  
[Anonymous], 2006, Br. Account. Rev., DOI DOI 10.1016/J.BAR.2005.09.001
[4]  
[Anonymous], 2004, EUR ACCOUNT REV
[5]  
[Anonymous], 2021, IEEE Trans. Broadcast.
[6]  
[Anonymous], 2013, SPRINGER TEXTS STAT, DOI [10.1007/978-1-4614-7138-7, DOI 10.1007/978-1-4614-7138-7]
[7]   Do Stock Returns Really Decrease with Default Risk? New International Evidence [J].
Aretz, Kevin ;
Florackis, Chris ;
Kostakis, Alexandros .
MANAGEMENT SCIENCE, 2018, 64 (08) :3821-3842
[8]   FINANCIAL RATIOS AS PREDICTORS OF FAILURE [J].
BEAVER, WH .
JOURNAL OF ACCOUNTING RESEARCH, 1966, 4 :71-111
[9]   Credit risk drivers: Evaluating the contribution of firm level information and of macroeconomic dynamics [J].
Bonfim, Diana .
JOURNAL OF BANKING & FINANCE, 2009, 33 (02) :281-299
[10]   Stock liquidity and default risk [J].
Brogaard, Jonathan ;
Li, Dan ;
Xia, Ying .
JOURNAL OF FINANCIAL ECONOMICS, 2017, 124 (03) :486-502