On a class of pseudorandom sequences from elliptic curves over finite fields

被引:18
作者
Hu, Honggang [1 ]
Hu, Lei
Feng, Dengguo
机构
[1] Chinese Acad Sci, Inst Software, State Key Lab Informat Secur, Beijing 100080, Peoples R China
[2] Chinese Acad Sci, Grad Sch, State Key Lab Informat Secur, Beijing 100049, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
aperiodic correlation; elliptic curve; exponential sum on elliptic curve; least period; linear complexity; periodic correlation; pseudo-random sequence; r-pattern;
D O I
10.1109/TIT.2007.899532
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Following the idea of Xing et al., we investigate a general method for constructing families of pseudorandom sequences with low correlation and large linear complexity from elliptic curves over fields in this correspondence. With the help of the tool of exponential sums on elliptic curves, we study their periods, linear complexities, linear complexity profiles, distributions of r-patterns, periodic correlation, partial period distributions, and aperiodic correlation in detail. The results show that they have nice randomness.
引用
收藏
页码:2598 / 2605
页数:8
相关论文
共 50 条
  • [41] Multiplication polynomials for elliptic curves over finite local rings
    Invernizzi, Riccardo
    Taufer, Daniele
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON SYMBOLIC & ALGEBRAIC COMPUTATION, ISSAC 2023, 2023, : 335 - 344
  • [42] Common divisors of elliptic divisibility sequences over function fields
    Joseph H. Silverman
    manuscripta mathematica, 2004, 114 : 431 - 446
  • [43] An Application of the Arithmetic of Elliptic Curves to the Class Number Problem for Quadratic Fields
    Iizuka, Yoshichika
    Konomi, Yutaka
    Nakano, Shin
    TOKYO JOURNAL OF MATHEMATICS, 2021, 44 (01) : 33 - 47
  • [44] Isomorphism classes of Edwards curves over finite fields
    Farashahi, Reza Rezaeian
    Moody, Dustin
    Wu, Hongfeng
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (03) : 597 - 612
  • [45] Common divisors of elliptic divisibility sequences over function fields
    Silverman, JH
    MANUSCRIPTA MATHEMATICA, 2004, 114 (04) : 431 - 446
  • [46] Large families of elliptic curve pseudorandom binary sequences
    Liu, Huaning
    Zhan, Tao
    Wang, Xiaoyun
    ACTA ARITHMETICA, 2009, 140 (02) : 135 - 144
  • [47] Linear Complexity Cubic Sequences over Finite Fields
    Edemskiy, Vladimir
    Sokolovskiy, Nikita
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICS AND COMPUTERS IN SCIENCES AND IN INDUSTRY (MCSI 2016), 2016, : 57 - 60
  • [48] Torsion of rational elliptic curves over different types of cubic fields
    Jeon, Daeyeol
    Schweizer, Andreas
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (06) : 1307 - 1323
  • [49] Infinite families of elliptic curves over Dihedral quartic number fields
    Jeon, Daeyeol
    Kim, Chang Heon
    Lee, Yoonjin
    JOURNAL OF NUMBER THEORY, 2013, 133 (01) : 115 - 122
  • [50] Torsion of Elliptic Curves Over Real Quadratic Fields of Smallest Discriminant
    Naba Kanta Sarma
    Indian Journal of Pure and Applied Mathematics, 2019, 50 : 161 - 169