Atomic Fingerprinting of Heteroatoms Using Noncontact Atomic Force Microscopy

被引:3
作者
Fan, Dingxin [1 ]
Chelikowsky, James R. [2 ]
机构
[1] Univ Texas Austin, McKetta Dept Chem Engn, POB 4-302,201 East 24th St C0200, Austin, TX 78712 USA
[2] Univ Texas Austin, McKetta Dept Chem Engn, Ctr Computat Mat, Oden Inst Computat Engn & Sci,Dept Phys, POB 4-302,201 East 24th St C0200, Austin, TX 78712 USA
关键词
atomic fingerprinting; density functional theory; heteroatoms; noncontact atomic force microscopy; organic chemistry; real space; ELECTRONIC-STRUCTURE CALCULATIONS; MOLECULE; BOND;
D O I
10.1002/smll.202102977
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Immense strides have been made in increasing the resolution of scanning probe microscopy. Noncontact atomic force microscopy (nc-AFM) now offers one the ability to characterize and visualize single molecules with subatomic resolution. Specifically, nc-AFM with a carbon monoxide (CO) functionalized tip has the ability to discriminate functional groups (-C(sic)C-, -CH2, -C(sic)O, horizontal ellipsis ), although discriminating atomic species often remains as an ongoing challenge. Here, real-space pseudopotentials constructed within density functional theory are employed to accurately simulate nc-AFM images of molecules containing heteroatoms (S, I, and N) within dibenzothiophene (DBT), 2-iodotriphenylene (ITP), acridine (ACR) and ferrous phthalocyanine (FePc). It is found that S and I atoms can be easily identified from C based on their unique features. For N atoms, a use of tip functionalization is proposed to effectively discriminate them from C atoms.
引用
收藏
页数:4
相关论文
共 50 条
[41]   Atomic resolution imaging of Si(100) 1 x 1:2H dihydride surface with noncontact atomic force microscopy (NC-AFM) [J].
Araragi, S ;
Yoshimoto, A ;
Nakata, N ;
Sugawara, Y ;
Morita, S .
APPLIED SURFACE SCIENCE, 2002, 188 (3-4) :272-278
[42]   Are High Resolution Atomic Force Microscopy images proportional to the force or the force [J].
Ventura-Macias, Emiliano ;
Romero-Muniz, Carlos ;
Gonzalez-Sanchez, Pablo ;
Pou, Pablo ;
Perez, Ruben .
APPLIED SURFACE SCIENCE, 2023, 634
[43]   First-Principles Atomic Force Microscopy Image Simulations with Density Embedding Theory [J].
Sakai, Yuki ;
Lee, Alex J. ;
Chelikowsky, James R. .
NANO LETTERS, 2016, 16 (05) :3242-3246
[44]   Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips [J].
Moenig, Harry ;
Amirjalayer, Saeed ;
Timmer, Alexander ;
Hu, Zhixin ;
Liu, Lacheng ;
Arado, Oscar Diaz ;
Cnudde, Marvin ;
Strassert, Cristian Alejandro ;
Ji, Wei ;
Rohlfing, Michael ;
Fuchs, Harald .
NATURE NANOTECHNOLOGY, 2018, 13 (05) :371-+
[45]   Atomic resolution imaging on Si(100)2x1 and Si(100)2x1:H surfaces with noncontact atomic force microscopy [J].
Yokoyama, K ;
Ochi, T ;
Yoshimoto, A ;
Sugawara, Y ;
Morita, S .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2000, 39 (2A) :L113-L115
[46]   The force of transporting a single amino acid into the living cell measured using atomic force microscopy [J].
Shang, Xin ;
Shan, Yuping ;
Pan, Yangang ;
Cai, Mingjun ;
Jiang, Junguang ;
Wang, Hongda .
CHEMICAL COMMUNICATIONS, 2013, 49 (74) :8163-8165
[47]   Atomic Observation on Diamond (001) Surfaces with Near-Contact Atomic Force Microscopy [J].
Zhang, Runnan ;
Yasui, Yuuki ;
Fukuda, Masahiro ;
Ozaki, Taisuke ;
Ogura, Masahiko ;
Makino, Toshiharu ;
Takeuchi, Daisuke ;
Sugimoto, Yoshiaki .
NANO LETTERS, 2025, 25 (03) :1101-1107
[48]   Quantifying the evolution of atomic interaction of a complex surface with a functionalized atomic force microscopy tip [J].
Liebig, Alexander ;
Hapala, Prokop ;
Weymouth, Alfred J. ;
Giessibl, Franz J. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[49]   Low temperature multimode atomic force microscopy using an active MEMS cantilever [J].
Ruppert, Michael G. ;
Wiche, Miguel ;
Schirmeisen, Andre ;
Ebeling, Daniel .
NANOSCALE, 2025, 17 (17) :10600-10608
[50]   Atomic Force Microscopy Nanoindentation Method on Collagen Fibrils [J].
Kontomaris, Stylianos Vasileios ;
Stylianou, Andreas ;
Malamou, Anna .
MATERIALS, 2022, 15 (07)