Atomic Fingerprinting of Heteroatoms Using Noncontact Atomic Force Microscopy

被引:3
作者
Fan, Dingxin [1 ]
Chelikowsky, James R. [2 ]
机构
[1] Univ Texas Austin, McKetta Dept Chem Engn, POB 4-302,201 East 24th St C0200, Austin, TX 78712 USA
[2] Univ Texas Austin, McKetta Dept Chem Engn, Ctr Computat Mat, Oden Inst Computat Engn & Sci,Dept Phys, POB 4-302,201 East 24th St C0200, Austin, TX 78712 USA
关键词
atomic fingerprinting; density functional theory; heteroatoms; noncontact atomic force microscopy; organic chemistry; real space; ELECTRONIC-STRUCTURE CALCULATIONS; MOLECULE; BOND;
D O I
10.1002/smll.202102977
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Immense strides have been made in increasing the resolution of scanning probe microscopy. Noncontact atomic force microscopy (nc-AFM) now offers one the ability to characterize and visualize single molecules with subatomic resolution. Specifically, nc-AFM with a carbon monoxide (CO) functionalized tip has the ability to discriminate functional groups (-C(sic)C-, -CH2, -C(sic)O, horizontal ellipsis ), although discriminating atomic species often remains as an ongoing challenge. Here, real-space pseudopotentials constructed within density functional theory are employed to accurately simulate nc-AFM images of molecules containing heteroatoms (S, I, and N) within dibenzothiophene (DBT), 2-iodotriphenylene (ITP), acridine (ACR) and ferrous phthalocyanine (FePc). It is found that S and I atoms can be easily identified from C based on their unique features. For N atoms, a use of tip functionalization is proposed to effectively discriminate them from C atoms.
引用
收藏
页数:4
相关论文
共 50 条
[21]   Submolecular Imaging by Noncontact Atomic Force Microscopy with an Oxygen Atom Rigidly Connected to a Metallic Probe [J].
Moenig, Harry ;
Hermoso, Diego R. ;
Arado, Oscar Diaz ;
Todorovic, Milica ;
Timmer, Alexander ;
Schueer, Simon ;
Langewisch, Gernot ;
Perez, Ruben ;
Fuchs, Harald .
ACS NANO, 2016, 10 (01) :1201-1209
[22]   Imaging perylene derivatives on rutile TiO2(110) by noncontact atomic force microscopy [J].
Schuette, J. ;
Bechstein, R. ;
Rahe, P. ;
Rohlfing, M. ;
Kuehnle, A. ;
Langhals, H. .
PHYSICAL REVIEW B, 2009, 79 (04)
[23]   High-Resolution Model for Noncontact Atomic Force Microscopy with a Flexible Molecule on the Tip Apex [J].
Guo, Chun-Sheng ;
Van Hove, Michel A. ;
Ren, Xinguo ;
Zhao, Yong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (03) :1483-1488
[24]   The atomic resolution imaging of metallic Ag(111) surface by noncontact atomic force microscope [J].
Orisaka, S ;
Minobe, T ;
Uchihashi, T ;
Sugawara, Y ;
Morita, S .
APPLIED SURFACE SCIENCE, 1999, 140 (3-4) :243-246
[25]   On-Surface Stereochemical Characterization of a Highly Curved Chiral Nanographene by Noncontact Atomic Force Microscopy and Scanning Tunneling Microscopy [J].
Zhong, Qigang ;
Barat, Viktor ;
Csokas, Daniel ;
Niu, Kaifeng ;
Gorecki, Marcin ;
Ghosh, Animesh ;
Bjork, Jonas ;
Ebeling, Daniel ;
Chi, Lifeng ;
Schirmeisen, Andre ;
Stuparu, Mihaiela C. .
CCS CHEMISTRY, 2023, 5 (12) :2888-2896
[26]   Electrostatic Discovery Atomic Force Microscopy [J].
Oinonen, Niko ;
Xu, Chen ;
Alldritt, Benjamin ;
Canova, Filippo Federici ;
Urtev, Fedor ;
Cai, Shuning ;
Krejci, Ondrej ;
Kannala, Juho ;
Liljeroth, Peter ;
Foster, Adam S. .
ACS NANO, 2022, 16 (01) :89-97
[27]   Atom Manipulation Using Atomic Force Microscopy at Room Temperature [J].
Sugimoto, Y. ;
Abe, M. ;
Morita, S. .
IMAGING AND MANIPULATION OF ADSORBATES USING DYNAMIC FORCE MICROSCOPY, 2015, :49-62
[28]   Bias dependence of Si(111) 7 X 7 images observed by noncontact atomic force microscopy [J].
Arai, T ;
Tomitori, M .
APPLIED SURFACE SCIENCE, 2000, 157 (04) :207-211
[29]   Stretching single polysaccharides and proteins using atomic force microscopy [J].
Marszalek, Piotr E. ;
Dufrene, Yves F. .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (09) :3523-3534
[30]   Manipulation of C60 islands on the rutile TiO2 (110) surface using noncontact atomic force microscopy [J].
Loske, Felix ;
Kuehnle, Angelika .
APPLIED PHYSICS LETTERS, 2009, 95 (04)