Atomic Fingerprinting of Heteroatoms Using Noncontact Atomic Force Microscopy

被引:2
作者
Fan, Dingxin [1 ]
Chelikowsky, James R. [2 ]
机构
[1] Univ Texas Austin, McKetta Dept Chem Engn, POB 4-302,201 East 24th St C0200, Austin, TX 78712 USA
[2] Univ Texas Austin, McKetta Dept Chem Engn, Ctr Computat Mat, Oden Inst Computat Engn & Sci,Dept Phys, POB 4-302,201 East 24th St C0200, Austin, TX 78712 USA
关键词
atomic fingerprinting; density functional theory; heteroatoms; noncontact atomic force microscopy; organic chemistry; real space; ELECTRONIC-STRUCTURE CALCULATIONS; MOLECULE; BOND;
D O I
10.1002/smll.202102977
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Immense strides have been made in increasing the resolution of scanning probe microscopy. Noncontact atomic force microscopy (nc-AFM) now offers one the ability to characterize and visualize single molecules with subatomic resolution. Specifically, nc-AFM with a carbon monoxide (CO) functionalized tip has the ability to discriminate functional groups (-C(sic)C-, -CH2, -C(sic)O, horizontal ellipsis ), although discriminating atomic species often remains as an ongoing challenge. Here, real-space pseudopotentials constructed within density functional theory are employed to accurately simulate nc-AFM images of molecules containing heteroatoms (S, I, and N) within dibenzothiophene (DBT), 2-iodotriphenylene (ITP), acridine (ACR) and ferrous phthalocyanine (FePc). It is found that S and I atoms can be easily identified from C based on their unique features. For N atoms, a use of tip functionalization is proposed to effectively discriminate them from C atoms.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Chemical and steric effects in simulating noncontact atomic force microscopy images of organic molecules on a Cu (111) substrate
    Fan, Dingxin
    Sakai, Yuki
    Chelikowsky, James R.
    PHYSICAL REVIEW MATERIALS, 2020, 4 (05):
  • [22] Imaging perylene derivatives on rutile TiO2(110) by noncontact atomic force microscopy
    Schuette, J.
    Bechstein, R.
    Rahe, P.
    Rohlfing, M.
    Kuehnle, A.
    Langhals, H.
    PHYSICAL REVIEW B, 2009, 79 (04)
  • [23] High-Resolution Model for Noncontact Atomic Force Microscopy with a Flexible Molecule on the Tip Apex
    Guo, Chun-Sheng
    Van Hove, Michel A.
    Ren, Xinguo
    Zhao, Yong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (03) : 1483 - 1488
  • [24] Submolecular Imaging by Noncontact Atomic Force Microscopy with an Oxygen Atom Rigidly Connected to a Metallic Probe
    Moenig, Harry
    Hermoso, Diego R.
    Arado, Oscar Diaz
    Todorovic, Milica
    Timmer, Alexander
    Schueer, Simon
    Langewisch, Gernot
    Perez, Ruben
    Fuchs, Harald
    ACS NANO, 2016, 10 (01) : 1201 - 1209
  • [25] The atomic resolution imaging of metallic Ag(111) surface by noncontact atomic force microscope
    Orisaka, S
    Minobe, T
    Uchihashi, T
    Sugawara, Y
    Morita, S
    APPLIED SURFACE SCIENCE, 1999, 140 (3-4) : 243 - 246
  • [26] On-Surface Stereochemical Characterization of a Highly Curved Chiral Nanographene by Noncontact Atomic Force Microscopy and Scanning Tunneling Microscopy
    Zhong, Qigang
    Barat, Viktor
    Csokas, Daniel
    Niu, Kaifeng
    Gorecki, Marcin
    Ghosh, Animesh
    Bjork, Jonas
    Ebeling, Daniel
    Chi, Lifeng
    Schirmeisen, Andre
    Stuparu, Mihaiela C.
    CCS CHEMISTRY, 2023, 5 (12): : 2888 - 2896
  • [27] Atom Manipulation Using Atomic Force Microscopy at Room Temperature
    Sugimoto, Y.
    Abe, M.
    Morita, S.
    IMAGING AND MANIPULATION OF ADSORBATES USING DYNAMIC FORCE MICROSCOPY, 2015, : 49 - 62
  • [28] Bias dependence of Si(111) 7 X 7 images observed by noncontact atomic force microscopy
    Arai, T
    Tomitori, M
    APPLIED SURFACE SCIENCE, 2000, 157 (04) : 207 - 211
  • [29] Stretching single polysaccharides and proteins using atomic force microscopy
    Marszalek, Piotr E.
    Dufrene, Yves F.
    CHEMICAL SOCIETY REVIEWS, 2012, 41 (09) : 3523 - 3534
  • [30] Manipulation of C60 islands on the rutile TiO2 (110) surface using noncontact atomic force microscopy
    Loske, Felix
    Kuehnle, Angelika
    APPLIED PHYSICS LETTERS, 2009, 95 (04)