Computations underlying Drosophila photo-taxis, odor-taxis, and multi-sensory integration

被引:69
作者
Gepner, Ruben [1 ]
Skanata, Mirna Mihovilovic [1 ]
Bernat, Natalie M. [1 ]
Kaplow, Margarita [2 ]
Gershow, Marc [1 ,2 ]
机构
[1] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA
[2] NYU, Ctr Neural Sci, New York, NY 10003 USA
关键词
CAENORHABDITIS-ELEGANS; C; ELEGANS; BEHAVIORAL VARIABILITY; CHEMOTAXIS BEHAVIOR; DECISION-MAKING; SENSORY NEURONS; MOLECULAR-BASIS; LIGHT; RESPONSES; DISTINCT;
D O I
10.7554/eLife.06229
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
To better understand how organisms make decisions on the basis of temporally varying multi-sensory input, we identified computations made by Drosophila larvae responding to visual and optogenetically induced fictive olfactory stimuli. We modeled the larva's navigational decision to initiate turns as the output of a Linear-Nonlinear-Poisson cascade. We used reverse-correlation to fit parameters to this model; the parameterized model predicted larvae's responses to novel stimulus patterns. For multi-modal inputs, we found that larvae linearly combine olfactory and visual signals upstream of the decision to turn. We verified this prediction by measuring larvae's responses to coordinated changes in odor and light. We studied other navigational decisions and found that larvae integrated odor and light according to the same rule in all cases. These results suggest that photo-taxis and odor-taxis are mediated by a shared computational pathway.
引用
收藏
页数:21
相关论文
共 63 条
[1]  
Albrecht DR, 2011, NAT METHODS, V8, P599, DOI [10.1038/NMETH.1630, 10.1038/nmeth.1630]
[2]   Multisensory integration: psychophysics, neurophysiology, and computation [J].
Angelaki, Dora E. ;
Gu, Yong ;
DeAngelis, Gregory C. .
CURRENT OPINION IN NEUROBIOLOGY, 2009, 19 (04) :452-458
[3]  
Asahina Kenta, 2009, J Biol, V8, P9, DOI 10.1186/jbiol108
[4]  
BERG HC, 1972, NATURE, V239, P500, DOI 10.1038/239500a0
[5]   Temperature, Oxygen, and Salt-Sensing Neurons in C. elegans Are Carbon Dioxide Sensors that Control Avoidance Behavior [J].
Bretscher, Andrew Jonathan ;
Kodama-Namba, Eiji ;
Busch, Karl Emanuel ;
Murphy, Robin Joseph ;
Soltesz, Zoltan ;
Laurent, Patrick ;
de Bono, Mario .
NEURON, 2011, 69 (06) :1099-1113
[6]   Tonic signaling from O2 sensors sets neural circuit activity and behavioral state [J].
Busch, Karl Emanuel ;
Laurent, Patrick ;
Soltesz, Zoltan ;
Murphy, Robin Joseph ;
Faivre, Olivier ;
Hedwig, Berthold ;
Thomas, Martin ;
Smith, Heather L. ;
de Bono, Mario .
NATURE NEUROSCIENCE, 2012, 15 (04) :581-591
[7]  
Busto M, 1999, J NEUROSCI, V19, P3337
[8]  
Chichilnisky EJ, 2001, NETWORK-COMP NEURAL, V12, P199, DOI 10.1088/0954-898X/12/2/306
[9]   Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans [J].
Chronis, Nikos ;
Zimmer, Manuel ;
Bargmann, Cornelia I. .
NATURE METHODS, 2007, 4 (09) :727-731
[10]   Temporal activity patterns in thermosensory neurons of freely moving Caenorhabditis elegans encode spatial thermal gradients [J].
Clark, Damon A. ;
Gabel, Christopher V. ;
Gabel, Harrison ;
Samuel, Aravinthan D. T. .
JOURNAL OF NEUROSCIENCE, 2007, 27 (23) :6083-6090