Nonlinear molecular excitations in a completely inhomogeneous DNA chain

被引:24
作者
Daniel, M. [1 ]
Vasumathi, V. [1 ]
机构
[1] Bharathidasan Univ, Ctr Nonlinear Dynam, Sch Phys, Tiruchirappalli 620024, India
关键词
DNA; soliton; multiple scale perturbation;
D O I
10.1016/j.physleta.2008.05.063
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the nonlinear dynamics of a completely inhomogeneous DNA chain which is governed by a perturbed sine-Gordon equation. A multiple scale perturbation analysis provides perturbed kink-antikink solitons to represent open state configuration with small fluctuation. The perturbation due to inhomogeneities changes the velocity of the soliton. However, the width of the soliton remains constant. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:5144 / 5151
页数:8
相关论文
共 38 条
[21]   PROBABLE PHYSICAL-MECHANISMS OF THE ACTIVATION OF ONCOGENES THROUGH CARCINOGENS [J].
LADIK, J ;
CIZEK, J .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1984, 26 (05) :955-964
[22]   Linear stability analysis for the multikink solution of the sine-Hilbert equation [J].
Matsuno, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (10) :7061-7078
[23]   STATISTICAL-MECHANICS OF A NONLINEAR MODEL FOR DNA DENATURATION [J].
PEYRARD, M ;
BISHOP, AR .
PHYSICAL REVIEW LETTERS, 1989, 62 (23) :2755-2758
[24]   NONLINEAR-WAVES IN DNA AND REGULATION OF TRANSCRIPTION [J].
POLOZOV, RV ;
YAKUSHEVICH, LV .
JOURNAL OF THEORETICAL BIOLOGY, 1988, 130 (04) :423-430
[25]   KINK STABILITY, PROPAGATION, AND LENGTH-SCALE COMPETITION IN THE PERIODICALLY MODULATED SINE-GORDON EQUATION [J].
SANCHEZ, A ;
BISHOP, AR ;
DOMINGUEZADAME, F .
PHYSICAL REVIEW E, 1994, 49 (05) :4603-4615
[26]   Soliton excitation in the DNA double helix [J].
Tabi, Conrad B. ;
Mohamadou, Alidou ;
Kofane, Timoleon C. .
PHYSICA SCRIPTA, 2008, 77 (04)
[27]   Compacton-like modes in model DNA systems and their bearing on biological functioning [J].
Takeno, S .
PHYSICS LETTERS A, 2005, 339 (3-5) :352-360
[28]   TOPOLOGICAL SOLITONS AND MODULATED STRUCTURE OF BASES IN DNA DOUBLE HELICES - A DYNAMIC PLANE BASE-ROTATOR MODEL [J].
TAKENO, S ;
HOMMA, S .
PROGRESS OF THEORETICAL PHYSICS, 1983, 70 (01) :308-311
[29]   Perturbation theory for the kink of the sine-Gordon equation [J].
Tang, Y ;
Wang, W .
PHYSICAL REVIEW E, 2000, 62 (06) :8842-8845
[30]  
Yakushevich L, 2004, NONLINEAR PHYS DNA